Skip to main content
Log in

Assessment of shock resistance of barium ferrite at dynamic shocked conditions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research work probes into the crystallographic and magnetic structural stability of barium ferrite nanoparticles (BaFe2O4 NPs) at dynamic shock wave-exposed conditions. Barium ferrite NPs have been prepared by co-precipitation method and the structural stability of the title ferrite has been scrutinized subsequent to the impact of shock waves (Mach number 2.2) at different counts of shocks viz., 50, 100 and 150, respectively, and their performance on shock resistance has been analyzed by the techniques of X-ray diffraction (XRD), ultra-violet diffused reflectance spectroscopy (UV-DRS), and vibrating sample magnetometry (VSM). Based on the results of the observed analytical measurements, it is substantiated that the test sample has not undergone any of the crystallographic phase transitions even though it has the crystal structure of polymorphism which manifests as the viable witness for the structural stability of the test sample that has been also authenticated by the XRD results. Very few slight changes are observed in the optical and magnetic properties of BaFe2O4 NPs at shocked conditions. More interestingly, the existence of mixed magnetic phase (ferro and anti-ferromagnetic) is witnessed at 50 and 100 shocked conditions because of the shock wave-induced directional disorder of the spin orientations of the test samples which is typically called “kink behavior”. The observed results reveal that the divalent ferrite NPs of BaFe2O4 have high shock resistance than that of the technologically important ferrites such as ZnFe2O4 and α-Fe2O3 NPs. Hence, the title material could be considered as a prospective candidate for the aerospace device fabrication because of the exceptional stability of its structure against the shock wave impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.A. Thabit, N.A. Kabir, The study of X-ray effect on structural, morphology and optical properties of ZnO nanopowder. Nucl. Inst. Methods Phys. Res. B 436, 278–284 (2018)

    Article  CAS  Google Scholar 

  2. S. Ahmad, K. Asokan, M.S. Khan, M. Zulfequar, Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5. Radiat. Eff. Defects Solids (2016). https://doi.org/10.1080/10420150.2016.1141906

    Article  Google Scholar 

  3. F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Pressure induced nanoparticle phase behavior, property, and applications. Chem. Rev. 119, 7673–7717 (2019)

    Article  CAS  Google Scholar 

  4. E.I. Collings, A.L. Goodwin, Metal–organic frameworks under pressure. J. Appl. Phys. 126, 181101 (2019)

    Article  Google Scholar 

  5. A. Sivakumar, A. Saranraj, S.S.J. Dhas, M. Jose, S.A.M.B. Dhas, Shock wave-induced defect engineering for investigation on optical properties of triglycine sulfate crystal. Opt. Eng. 58, 077104 (2019)

    Google Scholar 

  6. N.K. Gopinath, G. Jagadeesh, Bikramjit Basu; Shock wave-material interaction in ZrB2–SiC based ultra high temperature ceramics for hypersonic applications. J. Am. Ceram. Soc. 00, 1–14 (2019)

    Google Scholar 

  7. A. Sivakumar, S. Suresh, S. Balachandar, J. Thirupathy, J. Kalyana Sundar, S.A.M.B. Dhas, Effect of shock waves on thermophysical properties of ADP and KDP crystals. Optic. Laser. Technol 111, 284–289 (2019)

    Article  CAS  Google Scholar 

  8. A. Sivakumar, A. Saranraj, S.S.J. Dhas, S.A.M.B. Dhas, Shock wave induced enhancement of optical properties of benzil crystal. Mater. Res. Express 6, 046205 (2019)

    Article  Google Scholar 

  9. K. Vasu, H.S.S.R. Matte, S.N. Shirodkar, V. Jayaram, K.P.J. Reddy, U.V. Waghmar, C.N.R. Rao, Effect of high-temperature shock-wave compression on few-layer MoS2, WS2 and MoSe2. Chem. Phys. Lett. 582, 105–109 (2013)

    Article  CAS  Google Scholar 

  10. NKoteeswara Reddy, V. Jayaram, E. Arunan, Y.B. Kwon, W.J. Moon, K.P.J. Reddy, Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles. Diamond. Relat. Mater. 35, 53–57 (2013)

    Article  CAS  Google Scholar 

  11. A.V. Nikam, B.L.V. Prasad, A.A. Kulkarni, Wet chemical synthesis of metal oxide nanoparticles: a review. Cryst. Eng. Comm. 20, 5091–5107 (2018)

    Article  CAS  Google Scholar 

  12. A. Teber, K. Cil, T. Yilmaz, B. Eraslan, D. Uysal, G. Surucu, A.H. Baykal, R.K. Bansal, Manganese and zinc spinel ferrites blended with multi-walled carbon nanotubes as microwave absorbing materials. Aerospace 4, 2 (2017)

    Article  Google Scholar 

  13. L. Zheng, K. Fang, M. Zhang, Z. Nan, L. Zhao, D. Zhou, M. Zhu, W. Li, Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Adv 8, 39177 (2018)

    Article  CAS  Google Scholar 

  14. S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas, M. Jose, Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72–75 (2018)

    Article  CAS  Google Scholar 

  15. A. Rita, A. Sivakumar, M. Jose, S.A.M.B. Dhas, Shock wave recovery studies on structural and magnetic properties of α-Fe2O3 NPs. Mater. Res. Express 6, 095035 (2019)

    Article  CAS  Google Scholar 

  16. V. Jayaram, K.P.J. Reddy, Experimental study of the effect of strong shock heated test gases with cubic zirconia. Adv. Mater. Lett. 7, 100–150 (2016)

    Google Scholar 

  17. A. Sivakumar, C. Victor, M. Muralidhr Nayak, S.A.M.B. Dhas, Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions. Mater. Res. Express 6, 045031 (2019)

    Article  Google Scholar 

  18. A. Rita, A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Reversible magnetic phase transitions of MnO2 nano rods by shock wave recovery experiments. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04555-5

    Article  Google Scholar 

  19. A. Rita, A. Sivakumar, S.A.M.B. Dhas, Investigation of structural and magnetic phase behaviour of nickel oxide nanoparticles under shock wave recovery experiment. J. Supercond. Novel Mag. (2020). https://doi.org/10.1007/s10948-020-05435-z

    Article  Google Scholar 

  20. A. Sivakumar, S. Soundarya, S.S.J. Dhas, K. KamalaBharathi, S.A.M.B. Dhas, Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J. Phys. Chem. C 124, 10755–10763 (2020)

    Article  CAS  Google Scholar 

  21. A. Rita, A. Sivakumar, S.A.M.B. Dhas, Infuence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J. Nanostruct. Chem 9, 225–230 (2019)

    Article  CAS  Google Scholar 

  22. A. Rita, A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J. Nanostruct. Chem 10, 309–316 (2020)

    Article  Google Scholar 

  23. V. Jayaram, A. Gupta, K.P.J. Reddy, Investigation of strong shock wave interactions with CeO2 ceramic. J. Adv. Ceram. 3, 297–305 (2014)

    Article  CAS  Google Scholar 

  24. V. Mowlika, A. Sivakumar, S.A.M.B. Dhas, C.S. Naveen, A.R. Phani, R. Robert, Shock wave–induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J. Nanostruct. Chem (2020). https://doi.org/10.1007/s40097-020-00342-0

    Article  Google Scholar 

  25. V. Mowlika, C.S. Naveen, A.R. Phani, A. Sivakumar, S.A.M.B. Dhas, R. Robert, Crystallographic and magnetic phase stabilities of NiFe2O4 nanoparticles at shocked conditions. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04047-6

    Article  Google Scholar 

  26. A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions. Solid State.Sci 107, 106340 (2020)

    Article  CAS  Google Scholar 

  27. R. Dilip, R. Jayaprakash, P. Sangaiya, S. Gopi, The magnetic property alterations due to transition from barium ferrite (BaFe2O4) nano rods to barium carbonate (BaCO3) quantum dots. Res. Mater. 7, 100121 (2020)

    Google Scholar 

  28. D.A. Vinnik, M.V. Sudarikov, V.E. Zhivulin, Experimental study of Ba7Fe4O13, Ba3Fe2O6, Ba2Fe2O5, BaFe2O4 barium ferrites. Mater. Sci. Form. 870, 70–73 (2016)

    Article  Google Scholar 

  29. R. Dilip, R. Jayaprakash; Synthesis and characterization of BaFe2O4 nano-ferrites for gas sensor applications. Energ. Ecol. Environ. (2018) DOI; https://doi.org/10.1007/s40974-018-0093-z

    Article  Google Scholar 

  30. S.D. Dalt, B.B. Sousa, A.K. Alves, C.P. Bergmann, Structural and photocatalytic characterization of BaFe2O4 obtained at low temperatures. Mater. Res. 14, 505–507 (2011)

    Article  Google Scholar 

  31. M. Sharma, S.C. Kashyap, H.C. Gupta, M.C. Dimri, K. Asokan, Enhancement of curie temperature of barium hexaferrite by dense electronic excitations. AIP Adv. 4, 077129 (2014)

    Article  Google Scholar 

  32. A. Sivakumar, S. Balachandar, S.A.M.B. Dhas, Measurement of “shock wave parameters” in a novel table-top shock tube using microphones. Hum. Fact. Mech. Eng. Def. Safety 4, 3 (2020)

    Article  Google Scholar 

  33. A. Sivakumar, S.A.M.B. Dhas, Shock-wave-induced nucleation leading to crystallization in water. J. Appl. Cryst. 52, 1016–1021 (2019)

    Article  CAS  Google Scholar 

  34. H. Mitsuda, S. Mori, C. Okazaki, The crystal structure of barium monoferrite, BaFe2O4. Acta Cryst. B27, 1263 (1971)

    Article  Google Scholar 

  35. D. Luo, Y. Wang, G. Yang, Y. Ma, Barium in high oxidation states in pressure-stabilized barium fluorides. J. Phys. Chem. C 122(23), 12448–12453 (2018)

    Article  CAS  Google Scholar 

  36. D. Primc, D. Makovec, Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Nanoscale 7, 2688 (2015)

    Article  CAS  Google Scholar 

  37. S. Tamleh, G. Rezaei, J. Jalilian, Stress and strain effects on the electronic structure and optical properties of ScN monolayer. Phys. Lett. A 382, 339–345 (2018)

    Article  CAS  Google Scholar 

  38. A. Sivakumar, S.S.J. Dhas, S.A.M.B. Dhas, Shock wave–induced optical band gap engineering on pure and dye–doped potassium dihydrogen phosphate crystals. J. Mater. Sci. 31, 13704–13713 (2020)

    CAS  Google Scholar 

  39. Y.Y. Meng, M.H. He, Q. Zeng, D.L. Jiao, S. Shukla, R.V. Ramanujan, Z.W. Liu, Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J.Alloys. Compd. 583, 220–225 (2014)

    Article  CAS  Google Scholar 

  40. M. El Abouzir, M. Elansary, Belaiche, H. Jaziri, Magnetic and structural properties of single-phase Gd3+-substituted Co–Mg ferrite nanoparticles. RSC Adv. 10, 11244 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Science and Technology (DST), India for DST-FIST programme (SR/FST/College-2017/130 (c)).

Funding

The project was supported by Researchers Supporting Project Number (RSP-2021/231), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Mowlika, V., Dhas, S.S.J. et al. Assessment of shock resistance of barium ferrite at dynamic shocked conditions. J Mater Sci: Mater Electron 32, 22429–22439 (2021). https://doi.org/10.1007/s10854-021-06729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06729-1

Navigation