Skip to main content
Log in

Crystallographic and magnetic phase stabilities of NiFe2O4 nanoparticles at shocked conditions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present article, we have reported the crystallographic and magnetic phase stabilities of nickel ferrite nano particles (NiFe2O4 NPs) at different number of shock wave-loaded conditions. Series of shock pulses have been loaded on the test samples such as 50,100 and 150 shock pulses with Mach number 2.2. Powder X-ray diffractometer (XRD), diffused reflectance spectroscopy (DRS) and vibrating-sample magnetometer (VSM) are utilized to examine the crystallographic, electronic and magnetic phase stabilities. The observed XRD, DRS and VSM results indicated that no crystallographic, electronic and magnetic phase transitions occurred by the impact of shock waves. Fascinatingly, SEM images show the shock wave assisted shape modification at 150 shocks. The accomplished magnetic phase stability results have compared with our previous report on Fe2O3 NPs for better understanding the structure-property stabilities of title ferrite against the impact of shock waves. Based on the observed results, we wish to suggest that the title material is a suitable candidate for high pressure, high temperature applications and for aerospace applications due to the outstanding shock resistance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Chen, R. Fu, L. Wang, Z. Ma, G. Xiao, K. Wang, B. Zoua, J. Mater. Chem. A 7, 6357–6362 (2019)

    Article  CAS  Google Scholar 

  2. A. Sivakumar, S.S.J. Dhas, S. Balachandar, S.A.M.B. Dhas, J. Elect. Mater. 48, 7868–7873 (2019)

    Article  CAS  Google Scholar 

  3. A. Sivakumar, M. Sarumathi, S.S.J. Dhas, S.A.M.B. Dhas, J. Mater. Res. 17, 1–10 (2020)

    Google Scholar 

  4. D. Levy, V. Diella, M. Dapiaggi, A. Sani, M. Gemmi, A. Pavese, Phys. Chem. Miner. 31, 122–129 (2004)

    Article  CAS  Google Scholar 

  5. A. Sivakumar, S. Suresh, S. Balachandar, J. Thirupathy, J.K. Sundar, S.A.M.B. Dhas, Optic. Laser. Tech. 111, 284–289 (2019)

    Article  CAS  Google Scholar 

  6. A. Sivakumar, S. Suresh, J.A. Pradeep, S. Balachandar, S.A.M.B. Dhas, J. Eelect. Mater. 47, 4831–4839 (2018)

    Article  CAS  Google Scholar 

  7. K. Ichiyanagi, S. Takagi, N. Kawai, R. Fukaya, S. Nozawa, K.G. Nakamura, K.-D. Liss, M. Kimura, S.-I. Adachi, Sci Rep. 9, 7604 (2019)

    Article  Google Scholar 

  8. A. Sivakumar, M. Manivannan, S.S.J. Dhas, J.K. Sundar, M. Jose, S.A.M.B. Dhas, Mater. Res. Express. 6, 086303 (2019)

    Article  CAS  Google Scholar 

  9. S. Kalaiarasi, A. Sivakumar, S.A.M.B. Dhas, M. Jose, Mater. Lett. 219, 72–75 (2018)

    Article  CAS  Google Scholar 

  10. P. Bhardwaj, S. Singh, Cent. Eur. J. Chem. 10, 1391–1422 (2012)

    CAS  Google Scholar 

  11. N.K. Reddy, V. Jayaram, E. Arunan, Y.B. Kwon, W.J. Moon, K.P.J. Reddy, Diam. Relat. Mater. 35, 53–57 (2013)

    Article  CAS  Google Scholar 

  12. K. Ichiyanagi, N. Kawai, S. Nozawa, T. Sato, A. Tomita, M. Hoshino, K.G. Nakamura, S. Adachi, Y.C. Sasaki, Appl. Phys. Lett. 101, 181901 (2012)

    Article  Google Scholar 

  13. A. Sivakumar, A. Saranraj, S.S.J. Dhas, S.A.M.B. Dhas, Mater. Res. Express. 6, 046205 (2019)

    Article  Google Scholar 

  14. A. Sivakumar, A. Saranraj, S.S.J. Dhas, M. Jose, S.A.M.B. Dhas, Opt. Eng. 58, 077104 (2019)

    Google Scholar 

  15. A. Rita, A. Sivakumar, M. Jose, S.A.M.B. Dhas, Mater. Res. Express 6, 095035 (2019)

    Article  CAS  Google Scholar 

  16. C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Appl. Surf. Sci 435, 993–1001 (2018)

    Article  CAS  Google Scholar 

  17. J. Zhang, Y. Sun, X. Li, J. Xu, J. Alloys Compd. 831, 154796 (2020)

    Article  CAS  Google Scholar 

  18. X.B. Xie, C. Ni, Z.H. Lin, D. Wu, X.Q. Sun, Y.P. Zhang, B. Wang, W. Du, Chem. Eng. J. 396, 125205 (2020)

    Article  CAS  Google Scholar 

  19. L. Long, E. Yang, X. Qi, R. Xie, Z-Ch Bai, S Qin, C Deng, and W Zhong., ACS Sustain. Chem. Eng. 8, 613–623 (2020)

    Article  CAS  Google Scholar 

  20. F.D. Saccone, S. Ferrari, D. Errandonea, F. Grinblat, V. Bilovol, S. Agouram, J. Appl. Phys 118, 075903 (2015)

    Article  Google Scholar 

  21. Z. Wang, R.T. Downs, V. Pischedda, R. Shetty, S.K. Saxena, C.S. Zha, Y.S. Zhao, D. Schifer, A. Waskowska, Phys. Rev B. 68, 094101 (2003)

    Article  Google Scholar 

  22. V. Mowlika, A. Sivakumar, S.A.M.B. Dhas, C.S. Naveen, A.R. Phani, R. Robert, J. Nanostruct. Chem. (2020). https://doi.org/10.1007/s40097-020-00342-0

    Article  Google Scholar 

  23. A. Shan, X. Wu, J. Lu, C. Chen, R. Wang, Cryst Eng Commun. 17, 1603 (2015)

    Article  CAS  Google Scholar 

  24. R. Kesavamoorthi, C.R. Raja, J. Supercond. Nov. Magn. 30, 2535–2540 (2017)

    Article  CAS  Google Scholar 

  25. H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, RSC Adv. 6, 6589 (2016)

    Article  CAS  Google Scholar 

  26. J. Liua, H. Heb, X. Jinb, Z. Haoc, Z. Hu, Mater. Res. Bull. 36, 2357–2363 (2001)

    Article  Google Scholar 

  27. G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighian, Charact. Chin. Phys. Lett. 27, 126401 (2010)

    Article  Google Scholar 

  28. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, J. Magn. Magn. Mater. 345, 65–71 (2013)

    Article  CAS  Google Scholar 

  29. A. Sivakumar, A. Saranraj, S.S.J. Dhas, M. Jose, K.K. Bharathi, S.A.M.B. Dhas, Opt. Eng. 58, 107101 (2019)

    Google Scholar 

  30. A. Sivakumar, S.A.M.B. Dhas, J. Appl. Cryst. 52, 1016–1021 (2019)

    Article  CAS  Google Scholar 

  31. Y.I. Meshcheryakov, A.K. Divakov, S.A. Atroshenko, N.S. Naumova, Tech. Phys. Lett. 36, 1125–1128 (2010)

    Article  CAS  Google Scholar 

  32. A.E. Gleason, C.A. Bolme, H.J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R.G. Kraus, J.H. Eggert, D.E. Fratanduono, G.W. Collins, R. Sandberg, W. Yang, W.L. Mao, Nat. Commun. 6, 8191 (2015)

    Article  CAS  Google Scholar 

  33. A. Svetlana, D. Aleksandrb, M. Yuric, N. Nataliad, Mater. Sci. Forum. 794, 755–760 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Robert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowlika, V., Naveen, C.S., Phani, A.R. et al. Crystallographic and magnetic phase stabilities of NiFe2O4 nanoparticles at shocked conditions. J Mater Sci: Mater Electron 31, 14851–14858 (2020). https://doi.org/10.1007/s10854-020-04047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04047-6

Navigation