Skip to main content
Log in

Microwave dielectric property adjustment of CoZrNb2O8 ceramics by CaTiO3 addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Temperature stable microwave dielectric ceramics CoZrNb2O8-xCaTiO3 (x = 1/60 ~ 1/10) were fabricated by a solid-state technique. The phase formation and sintering behavior were detected for the purpose of structure–property relationship exploration. Appropriate rate of CaTiO3 addition was benefit to the sintering temperature decrease of CoZrNb2O8. From x = 1/50 to x = 1/10, unexpected CaNb2O6 and Ti2Nb10O29 phases both formed, consequent on the chemical reaction between CoZrNb2O8 and CaTiO3. Co-based oxide might separate out in the form of liquid phase and decrease the sintering temperature. Increasing CaTiO3 ration degraded the quality factor Q × f, but at the same time enhanced the dielectric constant εr and temperature coefficient of resonant frequency τf. According to the Lichtenecker mixing rule, the estimated microwave dielectric properties basically agreed well with the measured values at first. However, excessive CaTiO3 incorporation caused lattice defects and gave noticeable deviation. In current work, CoZrNb2O8-1/40CaTiO3 composite displayed a rather small τf with Q ×  f= 64,600 GHz at 1225 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.T. Sebastian, R. Ubic, H. Jantunen, Microwave Materials and Applications (Wiley, UK, 2017).

    Book  Google Scholar 

  2. B. Li, W. Liu, H.S. Leng, Effect of non-stoichiometry on the microstructure and microwave dielectric properties of Ca5Mg4+xV6O24 (-0.05≤x≤0.15) ceramics. J. Mater. Sci. 55, 3795–3802 (2020)

    Article  CAS  Google Scholar 

  3. C.L. Huang, M.H. Weng, Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741–2750 (2001)

    Article  CAS  Google Scholar 

  4. X.M. Chen, Y. Suzuki, N. Sato, Sinterability improvement of Ba(Mg1/3Ta2/3)O3 dielectric ceramics. J. Mater. Sci. Mater. Electron. 5, 244–247 (1994)

    Article  CAS  Google Scholar 

  5. D.J. Kim, J.W. Hahn, G.P. Han, S.S. Lee, T.G. Choy, Effects of alkaline-earth-metal addition on the sinterability and microwave characteristics of (Zr, Sn)TiO4 dielectrics. J. Am. Ceram. Soc. 83, 1010–1012 (2000)

    Article  CAS  Google Scholar 

  6. A. Baumgarte, R. Blachnik, New M2+M4+Nb2O8 phases. J. Alloys Compd. 215, 117–120 (1994)

    Article  CAS  Google Scholar 

  7. R. Xiang, H. Su, Q. Zhang, Y.X. Li, X.L. Tang, Crystal structure and improved microwave dielectric properties of ZnZr(1–x)TixNb2O8 ceramics. J. Mater. Sci. Mater. Electron. 31, 4769–4779 (2020)

    Article  CAS  Google Scholar 

  8. Y. Cheng, R.Z. Zuo, Y. Lv, Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics. Ceram. Int. 39, 8681–8685 (2013)

    Article  CAS  Google Scholar 

  9. P. Zhang, Y.G. Zhao, H.T. Wu, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A=Ta, Sb) ceramics. Dalton Trans. 44, 16684–16693 (2015)

    Article  CAS  Google Scholar 

  10. X.S. Lyu, L.X. Li, S. Zhang, A new low-loss dielectric material ZnZrTa2O8 for microwave devices. J. Eur. Ceram. Soc. 36, 931–935 (2016)

    Article  CAS  Google Scholar 

  11. X.S. Lyu, L.X. Li, H. Sun, S. Zhang, S. Li, High-Q microwave dielectrics in wolframite magnesium zirconium tantalite ceramics. Ceram. Int. 42, 2036–2040 (2016)

    Article  CAS  Google Scholar 

  12. Y.J. Lin, S.F. Wang, B.C. Lai, Y.X. Liu, Y.L. Chang, J.R. Yang, Densification, microstructure evolution, and microwave dielectric properties of Mg1-xCaxZrTa2O8 ceramics. J. Eur. Ceram. Soc. 37, 2825–2831 (2017)

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y.C. Zhang, M.Q. Xiang, Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J. Eur. Ceram. Soc. 36, 1945–1951 (2016)

    Article  CAS  Google Scholar 

  14. S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr. Mater. 69, 274–277 (2013)

    Article  CAS  Google Scholar 

  15. H.Y. Yang, S.R. Zhang, Y.P. Li, H.C. Yang, S.Y. Yang, T.L. Wen, E.Z. Li, Investigations of dielectric properties of wolframite A0.5Zr0.5NbO4 ceramics by bond theory and far-infrared spectroscopy. Ceram. Int. 46, 3688–3694 (2020)

    Article  CAS  Google Scholar 

  16. H.T. Wu, E.S. Kim, Characterization of crystal structure and microwave dielectric properties of AZrNb2O8 (A=Zn Co, Mg, Mn) ceramics based on complex bond theory. Ceram. Int. 42, 5785–5791 (2016)

    Article  CAS  Google Scholar 

  17. J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, H.T. Wu, Low temperature sintering and microwave dielectric properties of CoZrNb2O8 ceramics with H3BO3 addition. J. Mater. Sci. Mater. Electron. 27, 6564–6569 (2016)

    Article  CAS  Google Scholar 

  18. Z.B. Feng, C.F. Xing, J.X. Bi, X.S. Jiang, H.T. Wu, Sintering characteristics and microwave dielectric properties of low loss CoZrNb2O8 ceramics achieved by reaction sintering process. J. Alloys Compd. 686, 923–929 (2016)

    Article  CAS  Google Scholar 

  19. P.L. Wise, I.M. Reaney, W.E. Lee, T. Price, D.M. Iddles, D. Cannell, Structure-microwave property relations in (SrxCa1-x)n+1TinO3n+1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)

    Article  CAS  Google Scholar 

  20. Y. Yuan, S.R. Zhang, X.H. Zhou, L.C. Xiang, Investigation on the synthesis of (Zn1-xMgx)TiO3 and the modulation effect of CaTiO3. J. Mater. Sci. Mater. Electron. 19, 343–347 (2008)

    Article  CAS  Google Scholar 

  21. W. Wang, L.Y. Li, S.M. Xiu, B. Shen, Microwave dielectric properties of (Mg0.4Zn0.6)2SiO4-CaTiO3 ceramics sintered with Li2CO3-H3BO3 for LTCC technology. J. Alloys Compd. 639, 359–364 (2015)

    Article  CAS  Google Scholar 

  22. F.F. Ning, L. Gan, S.F. Yuan, Z.M. Qi, J. Jiang, T.J. Zhang, Correlation between vibrational modes of A-site ions and microwave dielectric properties in (1–x)CaTiO3-x(Li0.5Sm0.5)TiO3 ceramics. J. Alloys Compd. 729, 742–748 (2017)

    Article  CAS  Google Scholar 

  23. Y. Kobayashiy, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microw. Theory 33, 586–592 (1985)

    Article  Google Scholar 

  24. L.X. Li, H. Sun, X.S. Lv, S. Li, Microstructure and microwave dielectric characteristics of the CaxZn1-xTiNb2O8 temperature stable ceramics. J. Mater. Sci. Mater. Electron. 27, 126–133 (2016)

    Article  CAS  Google Scholar 

  25. P. Zhang, T. Wang, W.S. Xia, L.X. Li, Microwave dielectric properties of a new ceramic system NdNbO4 with CaF2 addition. J. Alloys Compd. 535, 1–4 (2012)

    Article  CAS  Google Scholar 

  26. A. Manan, Y. Iqbal, I. Qazi, Phase, microstructural characterization and dielectric properties of Ca-substituted Sr5Nb4TiO17 ceramics. J. Mater. Sci. 46, 3415–3423 (2011)

    Article  CAS  Google Scholar 

  27. X.J. Chua, J. Luxa, A.Y.S. Eng, S.M. Tan, Z. Sofer, M. Pumera, Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 6, 5724–5734 (2016)

    Article  CAS  Google Scholar 

  28. J.J. Wang, G.Y. Xiao, T.Q. Zhang, S. Hao, Z.Q. Jia, Y.L. Li, Fabrication of Co3O4/polyaniline-based carbon electrode for high-performance supercapacitor. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.158071

    Article  Google Scholar 

  29. W.J. Luo, L.X. Li, S.H. Yu, B. Zhang, J.L. Qiao, Raman, EPR and structural studies of novel CuZrNb2O8 ceramic for LTCC applications. Ceram. Int. 45, 15314–15319 (2019)

    Article  CAS  Google Scholar 

  30. G.L. Song, Y.C. Song, J. Su, K. Zhang, L.Y. Xing, H.G. Yang, N. Zhang, High temperature dielectric properties and magnetic behavior of K1-xCaxNbO3 ceramic. Phys. B 602, 412593 (2021)

    Article  CAS  Google Scholar 

  31. I. Bertóti, M. Mohai, J.L. Sullivan, S.O. Saied, Surface characterisation of plasma-nitrided titanium: an XPS study. Appl. Surf. Sci. 84, 357–371 (1995)

    Article  Google Scholar 

  32. Z.W. Zhang, L. Fang, H.C. Xiang, M.Y. Xu, Y. Tang, H. Jantunen, C.C. Li, Structural, infrared reflectivity spectra and microwave dielectric properties of the Li7Ti3O9F ceramic. Ceram. Int. 45, 10163–10169 (2019)

    Article  CAS  Google Scholar 

  33. Y.Z. Hao, H. Yang, G.H. Chen, Q.L. Zhang, Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 552, 173–179 (2013)

    Article  CAS  Google Scholar 

  34. R.C. Pullar, J. Breeze, N.M.N. Alford, Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J. Am. Ceram. Soc. 88, 2466–2471 (2005)

    Article  CAS  Google Scholar 

  35. W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. J. Jpn. Appl. Phys. 37, 5367–5371 (1998)

    Article  CAS  Google Scholar 

  36. S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  CAS  Google Scholar 

  37. S.H. Wu, G.Q. Wang, Y.S. Zhao, H. Su, BaO-TiO2 microwave ceramics. J. Eur. Ceram. Soc. 23, 2565–2568 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51902268), the Sichuan Science and Technology Program (2019YFG0234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, X., Ding, S. et al. Microwave dielectric property adjustment of CoZrNb2O8 ceramics by CaTiO3 addition. J Mater Sci: Mater Electron 32, 12661–12670 (2021). https://doi.org/10.1007/s10854-021-05901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05901-x

Navigation