Skip to main content
Log in

Microstructure and microwave dielectric characteristics of the CaxZn1−xTiNb2O8 temperature stable ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quantitative determination and the crystal structure of CaxZn1−xTiNb2O8 ceramics were analyzed by X-ray diffraction, the microwave dielectric properties were investigated. The results showed that the CaxZn1−xTiNb2O8 ceramics contained three main phases: ZnTiNb2O8 phase Zn0.17Nb0.33Ti0.5O2 phase and CaNb2O6 phase. With the increase of Ca content, the weight fraction of secondary phase Zn0.17Nb0.33Ti0.5O2 and CaNb2O6 increased. For ZnTiNb2O8, with the substitution of Ca2+ for Zn2+, the bond valence of Ti-site increased. The variation of distortion of oxygen octahedral was irregular. For Zn0.17Nb0.33Ti0.5O2, the distortion of oxygen octahedral and the bond valence of Ti-site increased with substitution of Ca2+. The increase of Ti-site bond valence led to a harder rattling of Ti cations of the specimens. As a result, the dielectric constant (ε) and the quality factor value (Qf) decreased, the temperature coefficient of resonant frequency (τ f ) moved to the positive direction. The typical values of ε = 38.6, Qf = 41,338 GHz, τ f  = −1.28 × 10−6/°C were obtained for CaxZn1−xTiNb2O8 (x = 0.45) specimens sintered at 1100 °C for 6 h. The high dielectric properties in microwave range drive these materials a promising application in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Singh, Infrared Phys. Technol. 53, 17 (2010)

    Article  Google Scholar 

  2. D. Zhou, W. Wu, H. Wang, Y. Hang, X. Yao, Mater. Sci. Eng. A 652, 460 (2007)

    Google Scholar 

  3. D.W. Kim, D.Y. Kim, K.S. Hong, J. Mater. Res. 15, 1331 (2000)

    Article  Google Scholar 

  4. D.H. Kang, E.S. Kim, Ceram. Int. 34, 889 (2008)

    Article  Google Scholar 

  5. H. Wang, Q. Zhang, H. Yang, J. Zou, Electron. Compon. Mater. 23, 4 (2004)

    Google Scholar 

  6. Q.W. Liao, L.X. Li, X. Ren, J. Am. Chem. Soc. 94, 3237 (2011)

    Google Scholar 

  7. C.L. Huang, S.H. Huang, R.Z. Lee, Key Eng. Mater. 547, 49 (2013)

    Article  Google Scholar 

  8. M. Guo, Y. Li, G. Dou, Mater. Sci. Mater. Electron. 25, 4319 (2014)

    Article  Google Scholar 

  9. L. Li, H. Cai, Q. Ren, H. Sun, Z. Gao, Ceram. Int. 40, 12213 (2014)

    Article  Google Scholar 

  10. R.J. Hill, C.J. Howard, J. Appl. Cryst. 20, 467 (1987)

    Article  Google Scholar 

  11. C. Dong, J. Appl. Cryst. 32, 838 (1999)

    Article  Google Scholar 

  12. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  13. A. Baumgarte, R. Blachnik, Mater. Res. Bull. 27, 1287 (1992)

    Article  Google Scholar 

  14. I. Abrahams, P.G. Bruce, W.I.F. David, A.R. West, Chem. Mater. 1, 237 (1989)

    Article  Google Scholar 

  15. J.P. Cummings, S.H. Simonsen, Am. Miner. 55, 90 (1970)

    Google Scholar 

  16. A. Baumgarte, R. Blachnik, J. Alloys. Compd. 215, 117 (1994)

    Article  Google Scholar 

  17. F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Solid State Chem. 36, 253 (2008)

    Article  Google Scholar 

  18. I.D. Brown, D. Altermatt, Acta Cryst. B 41, 244 (1985)

    Article  Google Scholar 

  19. K.M. Glassford, J.R. Chelikowsky, Phys. Rev. B 46, 1284 (1992)

    Article  Google Scholar 

  20. T. Hirata, J. Am. Ceram. Soc. 83, 3205 (2000)

    Article  Google Scholar 

  21. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  22. E.S. Kim, B.S. Chun, K.H. Yoon, Mater. Sci. Eng. B 99, 93 (2003)

    Article  Google Scholar 

  23. R.D. Shannon, G.R. Rossman, Am. Miner. 77, 94 (1992)

    Google Scholar 

  24. E.S. Kim, S.H. Kim, K.H. Yoon, J. Ceram. Soc. Jpn. 112, 1645 (2004)

    Google Scholar 

  25. E.S. Kim, W. Choi, J. Eur. Ceram. Soc. 26, 1761 (2006)

    Article  Google Scholar 

  26. H. Lee, I.T. Kim, K.S. Hong, Jpn. J. Appl. Phys. 36, 1318 (1997)

    Article  Google Scholar 

  27. D.W. Kim, J.H. Kim, J.R. Kim, K.S. Hong, Jpn. J. Appl. Phys. Part 1 40, 5994 (2001)

    Article  Google Scholar 

  28. J. Petzelt, S. Pacesová, J. Fousek, S. Kamba, V. železný, C. Koukal, J. Schwarzbach, B.P. Gorshunov, G.V. Kozlov, A.A. Volkov, Ferroelectrics 93, 77 (1989)

    Article  Google Scholar 

  29. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, J. Eur. Ceram. Soc. 30, 1731 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Sun, H., Lv, X. et al. Microstructure and microwave dielectric characteristics of the CaxZn1−xTiNb2O8 temperature stable ceramics. J Mater Sci: Mater Electron 27, 126–133 (2016). https://doi.org/10.1007/s10854-015-3727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3727-3

Keywords

Navigation