Skip to main content
Log in

Investigations of microstructural and impedance spectroscopic properties of Mg0.5Co0.5Fe1.6Al0.4O4 ferrite prepared using sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline Mg0.5Co0.5Fe1.6Al0.4O4 ferrite was prepared using sol–gel method. This sample was characterized by powder X-ray diffraction (XRD), Scanning electron microscopy, and impedance spectroscopy. XRD analysis combined with the Rietveld refinement confirmed the cubic-spinel structure (SG: \(Fd\stackrel{-}{3}m\)) for the prepared sample. Electrical conductivity obeying the Jonscher power law indicates that the prepared material exhibits semiconductor behavior, and the conduction process follows the “non-overlapping small polaron tunnelling, NSPT” model between neighbors’ sites. The behavior of dielectric constants such as permittivity and loss coefficient has been interpreted based on the Maxwell–Wagner’s theory of interfacial polarization. The curves of imaginary parts of impedance (Z″) and modulus (M″) show dielectric-relaxation phenomenon in the sample with activation energy near to that determined from the dc conductivity study. Nyquist plots (− Z″ vs. Z′) show a monotonic decrease in both grain resistance (Rg) and grain boundary resistance (Rgb) with increasing temperature such as Rgb ≫ Rg. This result confirms that the transport mechanism in Mg0.5Co0.5Fe1.6Al0.4O4 compound is governed by the grain boundaries effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For spinel ferrites having general formula of \({{({M}_{1-\delta }^{2+}{Fe}_{\delta }^{3+})}_{A}{{[{M}_{\delta }^{2+}Fe}_{2-\delta }^{3+}]}_{B}O}_{4}^{2-}\), where M is a divalent metal cation, the inversion degree (δ) is defined as the fraction of A sites occupied by Fe3+ cations [28].

References

  1. M.G. Naseri, M.K. Halimah, A. Dehzangi, A. Kamalianfar, E.B. Saion, B.Y. Majlis, J. Phys. Chem. of Solids 75, 315 (2014)

    Article  CAS  Google Scholar 

  2. P.K. Roy, J. Bera, J. Magn. Magn. Mater. 298, 38 (2006)

    Article  CAS  Google Scholar 

  3. S.N. Kane, M. Satalkar, J. Mater. Sci. 52, 3467 (2017)

    Article  CAS  Google Scholar 

  4. R. Gimenes, M.R. Baldissera, M.R.A. Silva, C.A. Silveira, D.A.W. Soares, L.A. Perazolli, M.R. Silva, M.A. Zaghete, Ceram. Int. 38, 741 (2012)

    Article  CAS  Google Scholar 

  5. I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324, 903 (2012)

    Article  CAS  Google Scholar 

  6. S. Hajarpour, K. Gheisari, A.H. Raouf, J. Magn. Magn. Mater. 329, 165 (2013)

    Article  CAS  Google Scholar 

  7. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509, 2909 (2011)

    Article  CAS  Google Scholar 

  8. A. Jawada, A.S. Ahmed, S.S.Z. Ashraf, M. Chaman, A. Azam, J. Alloys Compd. 530, 63 (2012)

    Article  Google Scholar 

  9. S. Rahman, K. Nadeem, M.A. Rehman, M. Mumtaz, S. Naeem, I.L. Papst, Ceram. Int. 39, 5235 (2013)

    Article  CAS  Google Scholar 

  10. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959), p. 143

    Google Scholar 

  11. E. Rezlescu, L. Sachelarie, N. Rezlescu, J. Optoelectron. Adv. Mater. 8, 1019 (2006)

    CAS  Google Scholar 

  12. A.M. Abdeen, J. Magn. Magn. Mater. 185, 199 (1998)

    Article  CAS  Google Scholar 

  13. M.A. El Hiti, J. Magn. Magn. Mater. 192, 305 (1999)

    Article  CAS  Google Scholar 

  14. I. Ahmad, T. Abbas, A.B. Ziya, G. Abbas, A. Maqsood, Mater. Res. Bull. 52, 11 (2014)

    Article  CAS  Google Scholar 

  15. M.A. Rehman, M.A. Malik, K. Khan, A. Maqsood, J. Nano Res. 14, 1 (2011)

    Article  Google Scholar 

  16. B.G. Toksha, S.E. Shirsath, M.L. Mane, K.M. Jadhav, Ceram. Int. 43, 14347 (2017)

    Article  CAS  Google Scholar 

  17. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, Curr. Appl. Phys. 9, 826 (2009)

    Article  Google Scholar 

  18. J. Rodriguez-Carvajal, M.T. Fernandez-Diaz, J.L. Martinez, J. Phys. 81, 210 (2000)

    Google Scholar 

  19. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  20. A. Manikandan, J.J. Vijaya, L.J. Kennedy, M. Bououdina, J. Mol. Struct. 1035, 332 (2013)

    Article  CAS  Google Scholar 

  21. L. Wang, M. Lu, Y. Liu, J. Li, M. Liu, H. Li, Ceram. Int. 41, 4176 (2015)

    Article  CAS  Google Scholar 

  22. Q. Lin, Y. He, J. Lin, F. Yang, L. Wang, J. Dong, J. Magn. Magn. Mater. 469, 89 (2019)

    Article  CAS  Google Scholar 

  23. M.K. Fayek, S.S. Ata-Allah, H.S. Refai, J. Appl. Phys. 85, 325 (1999)

    Article  CAS  Google Scholar 

  24. M.A. Ahmed, A.A. El-Khawlani, J. Magn. Magn. Mater. 321, 1959 (2009)

    Article  CAS  Google Scholar 

  25. A.G. Bhosale, B.K. Chougule, Mater. Chem. Phys. 97, 273 (2006)

    Article  CAS  Google Scholar 

  26. B. Antic, A. Kremenovic, A.S. Nikolic, M. Stoiljkovic, J. Phys. Chem. B 108, 12646 (2004)

    Article  CAS  Google Scholar 

  27. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, S.J. Shukla, K.M. Jadhav, Appl. Phys. A 95, 429 (2009)

    Article  CAS  Google Scholar 

  28. A. Gholizadeh, E. Jafari, J. Magn. Magn. Mater. 422, 328 (2017)

    Article  CAS  Google Scholar 

  29. U. Wongpratat, S. Maensiri, E. Swatsitang, Ceram. Int. 43, S351 (2017)

    Article  CAS  Google Scholar 

  30. R.D. Shannon, ActaCryst. A 32, 751 (1976)

    Google Scholar 

  31. K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  32. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  33. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, J Mater Sci: Mater. Electron. 29, 6879 (2018)

    CAS  Google Scholar 

  34. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 8 (2017)

    Article  Google Scholar 

  35. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, J. Mater. Sci.: Mater. Electron. 30, 8457 (2019)

    CAS  Google Scholar 

  36. O.N. Verma, N.K. Singh, R. Pandey, P. Singh, RSC Adv. 5, 21614 (2015)

    Article  CAS  Google Scholar 

  37. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Phase Transit. 90, 942 (2017)

    Article  CAS  Google Scholar 

  38. M.M. Ahmad, K. Yamada, T. Okuda, Solid State Ion. 167, 285 (2004)

    Article  CAS  Google Scholar 

  39. K. Verma, A. Kumar, D. Varshney, J Alloys Compd. 526, 91 (2012)

    Article  CAS  Google Scholar 

  40. K. Ramarao, B.R. Babu, B.K. Babu, V. Veeraiah, S.D. Ramarao, K. Rajasekhar, A.V. Rao, Physica B Condens Matter. 528, 18 (2018)

    Article  CAS  Google Scholar 

  41. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Ceram. Int. 43, 2529 (2017)

    Article  CAS  Google Scholar 

  42. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457 (2015)

    Article  CAS  Google Scholar 

  43. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, J. Alloys Compd. 690, 890 (2017)

    Article  CAS  Google Scholar 

  44. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973).

    Google Scholar 

  45. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  46. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  47. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Article  CAS  Google Scholar 

  48. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst, Solids 45, 57 (1981)

    CAS  Google Scholar 

  49. N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi, J. Electron. Mater. 45, 917 (2016)

    Article  CAS  Google Scholar 

  50. S. Saha, T.P. Sinha, Phys. Rev. B 65, 1341 (2005)

    Google Scholar 

  51. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  CAS  Google Scholar 

  52. K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801 (2007)

    Article  CAS  Google Scholar 

  53. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solid. 70, 1401 (2009)

    Article  CAS  Google Scholar 

  54. M. Nadeem, M.J. Akhtar, A.Y. Khan, J. Solid State Commun. 134, 431 (2005)

    Article  CAS  Google Scholar 

  55. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Hoque, Chem. J. Phys. Lett. 366, 433 (2002)

    Article  CAS  Google Scholar 

  56. D. Johnson, ZView: A Software Program for IES Analysis. Version 2.8 (Scribner Associates, Inc, Southern Pines, 2008).

    Google Scholar 

  57. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Appl. Phys. A 126, 362 (2020)

    Article  CAS  Google Scholar 

  58. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Phase Transit. 91, 316 (2018)

    Article  CAS  Google Scholar 

  59. M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D Appl. Phys. 43, 155401 (2010)

    Article  Google Scholar 

  60. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173 (2012)

    Article  CAS  Google Scholar 

  61. S. Thakura, R. Raia, I. Bdikinb, M. Almeida Valente, Mater. Res. 19, 1 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research in the field of scientific research and technology.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University for funding this research work through the Project Number 2020/01/16565.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Dabbebi or M. L. Bouazizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbebi, T., Hcini, S., Alzahrani, B. et al. Investigations of microstructural and impedance spectroscopic properties of Mg0.5Co0.5Fe1.6Al0.4O4 ferrite prepared using sol–gel method. J Mater Sci: Mater Electron 32, 12521–12534 (2021). https://doi.org/10.1007/s10854-021-05887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05887-6

Navigation