Skip to main content
Log in

Enhanced thermal conductivity in TiC/diamond or Cr3C2/diamond particles modified Bi-In-Sn compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Improving thermal conductivity is a critical issue in chip integration. In this work, the thermal conductivity of Bi-In-Sn (BIS) compounds was enhanced via the introduction of TiC/diamond or Cr3C2/diamond particles. The results show that the melting point of BIS/diamond composites was close to that of BIS (~ 60 °C). When the volume of diamond was the same as that of BIS, the sensible heat of diamond contributed ~ 12% to the volumetric latent heat of fusion of BIS/diamond composites. Voids/gaps existing in the interface between BIS and uncoated diamond were decreased using diamond particles coated with TiC or Cr3C2. The thermal conductivity of BIS (18 ± 0.39 W m−1 K−1) was each improved ~ 106% and ~ 100% by adding TiC and Cr3C2-coated diamond particles (37 ± 1.26 W m−1 K−1 for BIS/TiC diamond and 36 ± 1.24 W m−1 K−1 for BIS/Cr3C2 diamond). The effect of carbide coating thickness on the thermal conductivity of the composites was investigated. Over thick carbide coating on diamond particles would decrease the thermal conductivity of BIS/diamond composites. Simulation results indicate that the thermal conductivity of BIS/diamond composites decreased with the increasing thickness of carbide coating. Voids existing in the interface between BIS and diamond would dramatically decrease the thermal conductivity of the composites. Further, the thermal conductivity of BIS/diamond composites decreased with the increase of volume fraction of voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.M. Waldrop, Nature 530(7589), 144–147 (2016)

    Article  CAS  Google Scholar 

  2. S.M.S. Murshed, C.A.N.D. Castro, Renew. Sustain. Energy Rev. 78, 821–833 (2017)

    Article  Google Scholar 

  3. J. Hansson, T.M.J. Nilsson, L.L. Ye, J. Liu, Int. Mater. Rev. 63(1), 22–45 (2018)

    Article  CAS  Google Scholar 

  4. X. Xu, J. Chen, J. Zhou, B. Li, Adv. Mater. 30(17), 1705544 (2018)

    Article  Google Scholar 

  5. T. Zhang, B.G. Sammakia, Z. Yang, H. Wang, J. Electron. Packag. (2018). https://doi.org/10.1115/1.4040204

    Article  Google Scholar 

  6. J.S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Science 361(6402), 575–578 (2018)

    Article  CAS  Google Scholar 

  7. S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, D.G. Cahill, B. Lv, Science 361(6402), 579–581 (2018)

    Article  CAS  Google Scholar 

  8. G. Bai, N. Li, X. Wang, J. Wang, M.J. Kim, H. Zhang, J. Alloys Compd. 735, 1648–1653 (2018)

    Article  CAS  Google Scholar 

  9. J.M. Molina-Jordá, Acta Mater. 96, 101–110 (2015)

    Article  Google Scholar 

  10. R. Srikanth, P. Nemani, C. Balaji, Appl. Energy 156, 703–714 (2015)

    Article  CAS  Google Scholar 

  11. A.K. Pandey, M.S. Hossain, V.V. Tyagi, N. Abd Rahim, J.A.L. Selvaraj, A. Sari, Renew. Sustain. Energy Rev. 82, 281–323 (2018)

    Article  Google Scholar 

  12. A. Kardam, S.S. Narayanan, N. Bhardwaj, D. Madhwal, P. Shukla, A. Verma, V.K. Jain, RSC Adv. 5(70), 56541–56548 (2015)

    Article  CAS  Google Scholar 

  13. R. Gulfam, P. Zhang, Z. Meng, Appl. Energy 238, 582–611 (2019)

    Article  CAS  Google Scholar 

  14. Y. Wu, T. Yong, Z. Li, X. Ding, Y. Wei, X. Zhao, B. Yu, Appl. Therm. Eng. 108, 192–203 (2016)

    Article  Google Scholar 

  15. P.J. Shamberger, N.M. Bruno, Appl. Energy 258, 113955 (2020)

    Article  CAS  Google Scholar 

  16. X.-H. Yang, S.-C. Tan, J. Liu, Int. J. Heat Mass Transf. 100, 899–907 (2016)

    Article  Google Scholar 

  17. L. Shao, A. Raghavan, G.-H. Kim, L. Emurian, J. Rosen, M.C. Papaefthymiou, T.F. Wenisch, M.M.K. Martin, K.P. Pipe, Int. J. Heat Mass Transf. 101, 764–771 (2016)

    Article  Google Scholar 

  18. X.H. Yang, J. Liu, Advances in Liquid Metal Science and Technology in Chip Cooling and Thermal Management (Elsevier, Amsterdam, 2018).

    Book  Google Scholar 

  19. G. Nabiyouni, D. Ghanbari, J. Nanostruct. 8, 408–416 (2018)

    CAS  Google Scholar 

  20. N. Eskandari, G. Nabiyouni, S. Masoumi, D. Ghanbari, Compos. B 176, 107343 (2019)

    Article  CAS  Google Scholar 

  21. M. Joulaei, K. Hedayati, D. Ghanbari, Compos. B 176, 107345 (2019)

    Article  CAS  Google Scholar 

  22. A. Kiani, G. Nabiyouni, S. Masoumi, D. Ghanbari, Compos. B 175, 107080 (2019)

    Article  CAS  Google Scholar 

  23. C. Zeng, J. Shen, J. Zhang, Diam. Relat. Mater. 112, 108230 (2021)

    Article  CAS  Google Scholar 

  24. L. Wang, J. Li, Z. Che, X. Wang, H. Zhang, J. Wang, M.J. Kim, J. Alloys Compd. 749, 1098–1105 (2018)

    Article  CAS  Google Scholar 

  25. S. Wei, Z.F. Yu, L.J. Zhou, J.D. Guo, J. Mater. Sci.: Mater. Electron. 30(7), 7194–7202 (2019)

    CAS  Google Scholar 

  26. C.Z. Zeng, J. Shen, C. He, H. Chen, Scr. Mater. 170, 140–144 (2019)

    Article  CAS  Google Scholar 

  27. Y. Borzdov, Y. Pal’yanov, I. Kupriyanov, V. Gusev, A. Khokhryakov, A. Sokol, A. Efremov, Diam. Relat. Mater. 11(11), 1863–1870 (2002)

    Article  CAS  Google Scholar 

  28. A.E. Mayer, Philos. Mag. B 69(6), 1141–1147 (1994)

    Article  Google Scholar 

  29. A.M. Abyzov, M.J. Kruszewski, Ł Ciupiński, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski, Mater. Des. 76, 97–109 (2015)

    Article  CAS  Google Scholar 

  30. G. Chang, F. Sun, J. Duan, Z. Che, X. Wang, J. Wang, M.J. Kim, H. Zhang, Acta Mater. 160, 235–246 (2018)

    Article  CAS  Google Scholar 

  31. L. Xin, X. Tian, W. Yang, G. Chen, J. Qiao, F. Hu, Q. Zhang, G. Wu, J. Alloys Compd. 763, 305–313 (2018)

    Article  CAS  Google Scholar 

  32. V.T. Witusiewicz, U. Hecht, B. Böttger, S. Rex, J. Alloys Compd. 428(1), 115–124 (2007)

    Article  CAS  Google Scholar 

  33. X.-H. Yang, S.-C. Tan, Y.-J. Ding, L. Wang, J. Liu, Y.-X. Zhou, Int. Commun. Heat Mass 87, 118–124 (2017)

    Article  CAS  Google Scholar 

  34. D.A.G. Bruggeman, Ann. Phys. 416, 665–679 (1935)

    Article  Google Scholar 

  35. C. Monachon, L. Weber, Acta Mater. 73, 337–346 (2014)

    Article  CAS  Google Scholar 

  36. L. Wang, J. Li, M. Catalano, G. Bai, N. Li, J. Dai, X. Wang, H. Zhang, J. Wang, M.J. Kim, Compos. A 113, 76–82 (2018)

    Article  CAS  Google Scholar 

  37. M. Zain-ul-abdein, K. Raza, F.A. Khalid, T. Mabrouki, Mater. Des. 86, 248–258 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Shen, J., Gong, M. et al. Enhanced thermal conductivity in TiC/diamond or Cr3C2/diamond particles modified Bi-In-Sn compounds. J Mater Sci: Mater Electron 32, 13205–13219 (2021). https://doi.org/10.1007/s10854-021-05859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05859-w

Navigation