Skip to main content
Log in

Interphase layer characteristics and thermal conductivity of hot-forged Cu-B/diamond composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Copper/diamond composites are regarded as the next-generation heat sink materials and have great potential to be used for future high-power electronic devices. The interphase layer characteristics between the copper matrix and the diamond have a significant influence on the composite’s thermophysical properties. In this work, a cost-effective hot forging process is used to fabricate diamond particles (about 70 μm diameter) reinforced Cu-xB matrix (x = 0.3, 0.5 and 1.0 wt.%) composites. The results show that B4C particles are easier to nucleate on the diamond (100) facet than on diamond (111) facet during the hot forging. The morphology of the newly formed B4C interphase layer on the diamond (100) facet evolved from a fine dispersed particle (Cu-0.3B/diamond) to a continuous dense structure (Cu-1B/diamond). On the diamond (111) facet, the B4C nucleation is difficult due to relative stronger carbon bonds formed on the diamond (111) facet (three bonds) than on the diamond (100) facet (two bonds), the growth of previously nucleated B4C become predominated, resulting in forming a B4C interphase layer with large particle size and low density on the diamond (111) facet. The Cu-0.5B/diamond has the highest thermal conductivity among the three fabricated composites (440 W/mK), and a low coefficient of thermal expansion (6.57 × 10–6 /K) at 313 K is obtained. With increasing the diamond particle size to 200 μm, the hot-forged Cu-0.5B/diamond had an increased thermal conductivity (495 W/mK). It demonstrates that hot forging is a feasible method to fabricate Cu/diamond composites with acceptable thermal conductivity from powder mixture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw and processed data generated during this study will be made available upon reasonable request.

References

  1. Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174

    Article  CAS  Google Scholar 

  2. Jia SQ, Yang F (2021) High thermal conductive copper/diamond composites: state of the art. J Mater Sci 56:2241–2274

    Article  CAS  Google Scholar 

  3. Zhuang J, Sun J, Wu D, Liu Y, Patil RR, Pan D, Guo Z (2021) Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv Compos Hybrid Mater

  4. Ma JN, Bolzoni L, Yang F (2021) Interface manipulation and its effects on the resultant thermal conductivity of hot-forged copper/Ti-coated diamond composites. J Alloys Compd 868:159182

    Article  CAS  Google Scholar 

  5. Lei L, Bolzoni L, Yang F (2020) High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite. Carbon 168:553–563

    Article  CAS  Google Scholar 

  6. Cao H, Tan Z, Lu MH, Ji G, Yan XJ, Di C, Yuan M, Guo Q, Su Y, Addad A, Li Z, Xiong DB (2019) Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: an approach beyond surface metallization and matrix alloying. Carbon 150:60–68

    Article  CAS  Google Scholar 

  7. Zhao D, Zha S, Liu D (2021) Influence of sputtering and electroless plating of Cr/Cu dual-layer structure on thermal conductivity of diamond/copper composites. Diam Relat Mater 108296

  8. Xie Z, Guo H, Zhang X, Huang S, Xie H, Mi X (2021) Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying. Diam Relat Mater 114:108309

    Article  CAS  Google Scholar 

  9. Schöbel M, Degischer HP, Vaucher S, Hofmann M, Cloetens P (2010) Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum. Acta Mater 58:6421–6430

    Article  Google Scholar 

  10. Jia SQ, Bolzoni L, Li T, Yang F (2021) Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu-Cr/Diamond composites. Carbon 172:390–401

    Article  CAS  Google Scholar 

  11. Wu Y, Luo J, Wang Y, Wang G, Wang H, Yang Z, Ding G (2019) Critical effect and enhanced thermal conductivity of Cu-diamond composites reinforced with various diamond prepared by composite electroplating. Ceram Int 45:13225–13234

    Article  CAS  Google Scholar 

  12. Schubert T, Zieliński W, Michalski A et al (2008) Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scr Mater 58:263–266

    Article  CAS  Google Scholar 

  13. Ren S, Shen X, Guo C, Liu N, Zang J, He X, Qu X (2011) Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy. Compos Sci Technol 71:1550–1555

    Article  CAS  Google Scholar 

  14. Chung CY, Lee MT, Tsai MY, Chu CH, Lin SJ (2014) High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique. Appl Therm Eng 69:208–213

    Article  CAS  Google Scholar 

  15. Li J, Wang X, Qiao Y et al (2015) High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr Mater 109:72–75

    Article  CAS  Google Scholar 

  16. Ciupiński Ł, Kruszewski MJ, Grzonka J et al (2017) Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater Des 120:170–185

    Article  Google Scholar 

  17. Bai G, Wang L, Zhang Y, Wang X, Wang J, Kim MJ, Zhang H (2019) Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater Charact 152:265–275

    Article  CAS  Google Scholar 

  18. Wang L, Li J, Che Z, Wang X, Zhang H, Wang J, Kim MJ (2018) Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. J Alloys Compd 749:1098–1105

    Article  CAS  Google Scholar 

  19. Liu RX, Luo GQ, Li Y, Zhang J, Shen Q, Zhang LM (2019) Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating. Surf Coat Technol 360:376–381

    Article  CAS  Google Scholar 

  20. Wang L, Li J, Catalano M, Bai G, Li N, Dai J, Wang X, Zhang H, Wang J, Kim MJ (2018) Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Compos Part A-Appl Sci Manuf 113:76–82

    Article  CAS  Google Scholar 

  21. Chang G, Sun FY, Duan JL, Che ZF, Wang XT, Wang JG, Kim MJ, Zhang HL (2018) Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater 160:235–246

    Article  CAS  Google Scholar 

  22. Chang G, Sun F, Wang L et al (2019) Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications. ACS Appl Mater Interfaces 11:26507–26517

    Article  CAS  Google Scholar 

  23. Zhang H, Zhang J, Liu Y et al (2018) Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface. Scr Mater 152:84−88

  24. Kleiner S, Khalid FA, Ruch PW et al (2006) Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium. Scr Mater 55:291–294

    Article  CAS  Google Scholar 

  25. Lei L, Su Y, Bolzoni L, Yang F (2020) Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite. J Mater Sci Technol 49:7–14

    Article  Google Scholar 

  26. Wang L, Li J, Bai G, Li N, Wang X, Zhang H, Wang J, Kim MJ (2019) Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration. J Alloys Compd 781:800–809

    Article  CAS  Google Scholar 

  27. Li JW, Zhang HL, Wang LH, Che ZF, Zhang Y, Wang JG, Kim MJ, Wang XT (2016) Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration. Compos Part A-Appl Sci Manuf 91:189–194

    Article  CAS  Google Scholar 

  28. Dong YH, Zhang RQ, He XB, Ye ZG, Qu XH (2012) Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration. Mater Sci Eng B 177:1524–1530

    Article  CAS  Google Scholar 

  29. Kidalov SV, Shakhov FM (2009) Thermal conductivity of diamond composites. Materials 2:2467–2495

    Article  CAS  Google Scholar 

  30. Grzonka J, Kruszewski MJ, Rosiński M, Ciupiński Ł, Michalski A, Kurzydłowski KJ (2015) Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route. Mater Charact 99:188–194

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scr Mater 65:1097–1100

    Article  CAS  Google Scholar 

  32. Yang L, Sun L, Bai WW, Li LC (2019) Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering. Diam Relat Mater 94:37–42

    Article  CAS  Google Scholar 

  33. Chen H, Jia C, Li S et al (2012) Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique. Int J Min Met Mat 19:364–371

    Article  CAS  Google Scholar 

  34. Ekimov EA, Suetin NV, Popovich AF, Ralchenko VG (2008) Thermal conductivity of diamond composites sintered under high pressures. Diam Relat Mater 17:838–843

    Article  CAS  Google Scholar 

  35. Yang F, Sun W, Singh A, Bolzoni L (2018) Effect of minor titanium addition on copper/diamond composites prepared by hot forging. JOM 70:2243–2248

    Article  CAS  Google Scholar 

  36. Yang F, Su Y, Jia SQ, Zhao QY, Bolzoni L, Li T, Qian M (2019) Titanium-doped copper-diamond composites fabricated by hot-forging of powder mixtures or cold-pressed powder preforms. JOM 71:4867–4871

    Article  CAS  Google Scholar 

  37. Harkins WD (1942) Energy relations of the surface of solids I. Surface energy of the diamond. J Chem Phys 10:268–272

    Article  CAS  Google Scholar 

  38. Chakrabarti DJ, Laughlin DE (1982) The B−Cu (Boron−Copper) system. Bull Alloy Phase Diagr 3:45–48

    Article  Google Scholar 

  39. Khai TV, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, Kim HW (2012) Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem Eng J 211–212:369–377

    Article  Google Scholar 

  40. Yuan B, Xing W, Hu Y, Mu X, Wang J, Tai Q, Li G, Liu L, Liew KM, Hu Y (2016) Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 101:152–158

    Article  CAS  Google Scholar 

  41. Ashcheulov P, Taylor A, Živcová ZV, Hubík P, Honolka J, Vondráček M, Remzová M, Kopeček J, Klimša L, Lorinčik J, Davydova M, Remeš Z, Kohout M, Beltran AM, Mortet V (2020) Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties. Appl Mater Today 19:100633

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA2386-17-1-4025.

Author information

Authors and Affiliations

Authors

Contributions

L. Lei: writing—original draft, investigation, formal analysis; L. Bolzoni: methodology; F. Yang: conceptualization, methodology, investigation, writing—review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to F. Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Bolzoni, L. & Yang, F. Interphase layer characteristics and thermal conductivity of hot-forged Cu-B/diamond composites. Adv Compos Hybrid Mater 5, 1527–1536 (2022). https://doi.org/10.1007/s42114-021-00248-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00248-7

Keywords

Navigation