Skip to main content

Advertisement

Log in

On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An effective one-step electrochemical method was developed to synthesize three-dimensional N-doped porous graphene/magnetite nanoparticles hybrid onto Ni foam (Fe3O4@3D-NPG/NF electrode). In this method, 3D nitrogen-doped porous graphene layers are electrophoretically deposited onto Ni foam, accompanied by the simultaneous in situ electrochemical deposition (ECD) of magnetite particles onto 3D-NPG layers. For comparison, Fe3O4 particles and N-doped graphene were separately deposited onto Ni foam, and pristine Fe3O4/NF and 3D-NPG/NF electrodes were fabricated. The structure, composition and morphology of the fabricated electrode materials were systematically characterized by XRD, FT-IR, FE-SEM, Raman, TEM, BET, and TGA/DSC techniques. The formation mechanism of Fe3O4@3D-NPG hybrid through EPD/ECD was proposed and described in detail. The charge storage capabilities of the fabricated electrodes were analyzed as the supercapacitor electrode. The results GCD tests revealed that Fe3O4@3D-NPG electrode is able to deliver specific capacity value of 715 F g−1 at 2 A g−1 and cycle life of 94.3% after 5000 GCD cycles, where the pristine Fe3O4/NF electrode delivered only specific capacity of 219 F g−1 and 77.6% capacity retention. These findings implicated the positive synergistic effects between Fe3O4 and 3D-NPG in the hybrid electrode to exhibit higher supercapacitive performance. This simple strategy could find practical uses in the large-scale fabricating Fe3O4@3D-NPG electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Pritam Kumar, A. Grigoriev, Y.K. Mishra, R. Ahuja, Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Adv. 2, 70–108 (2020). https://doi.org/10.1039/C9NA00307J

    Article  Google Scholar 

  2. P. Zhenghui, J. Yang, Y. Zhang, X. Gao, J. Wang, Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. J. Mater. Chem. A 8, 6406–6433 (2020). https://doi.org/10.1039/C9TA13887K

    Article  Google Scholar 

  3. P. Zhang, F. Wang, S. Yang, G. Wang, M. Yu, X. Feng, Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications. Energy Storage Mater. 28, 160–187 (2020). https://doi.org/10.1016/j.ensm.2020.02.029

    Article  CAS  Google Scholar 

  4. M.G. Josué, M.I. da Silva, H.E. Toma, L. Angnes, P.R. Martins, K. Araki, Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. J. Mater. Chem. A 8, 10534–10570 (2020). https://doi.org/10.1039/D0TA02939D

    Article  Google Scholar 

  5. D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance nature. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766

    Article  CAS  Google Scholar 

  6. W. Ji-Shi, T.B. Song, P. Zhang, X.Q. Niu, X.B. Chen, H.M. Xiong, A new generation of energy storage electrode materials constructed from carbon dots. Mater. Chem. Front. 4, 729–749 (2020). https://doi.org/10.1039/C9QM00554D

    Article  Google Scholar 

  7. T. You, Z.Y. Sui, B.H. Han, Advanced porous graphene materials: from in-plane pore generation to energy storage applications. J. Mater. Chem. A 8, 6125–6143 (2020). https://doi.org/10.1039/D0TA00154F

    Article  Google Scholar 

  8. A. Cuihua, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 1, 4644–4658 (2019). https://doi.org/10.1039/C9NA00543A

    Article  Google Scholar 

  9. Q. Zenghui, Y. Peng, D. He, Y. Wang, S. Chen, Ternary Fe3O4@C@PANi nanocomposites as high-performance supercapacitor electrode materials. J. Mater. Sci. 53, 12322–12333 (2018). https://doi.org/10.1007/s10853-018-2451-9

    Article  CAS  Google Scholar 

  10. V.D. Nithya, S. Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4, 10767–10778 (2016). https://doi.org/10.1039/C6TA02582J

    Article  CAS  Google Scholar 

  11. J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3O4/Fe-carbon nanocomposites with Fe-carbon double conductive network as supercapacitor. Electrochim. Acta 215, 483–491 (2016). https://doi.org/10.1016/j.electacta.2016.08.139

    Article  CAS  Google Scholar 

  12. M. Liu, J. Sun, In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J. Mater. Chem. A 2, 12068–12074 (2014). https://doi.org/10.1039/C4TA01442A

    Article  CAS  Google Scholar 

  13. M.M. Mezgebe, Z. Yan, G. Wei, S. Gong, F. Zhang, S. Guang, H. Xu, 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor electrodes with improved electrochemical properties. Mater. Today Energy 5, 164–172 (2017). https://doi.org/10.1016/j.mtener.2017.06.007

    Article  Google Scholar 

  14. L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang, P. Yang, Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim. Acta 190, 566–573 (2016). https://doi.org/10.1016/j.electacta.2015.12.137

    Article  CAS  Google Scholar 

  15. T. Qi, J. Jiang, H. Chen, H. Wan, L. Miao, L. Zhang, Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim. Acta 114, 674–680 (2013). https://doi.org/10.1016/j.electacta.2013.10.068

    Article  CAS  Google Scholar 

  16. Q. Qunting, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574–5580 (2011). https://doi.org/10.1002/adma.201103042

    Article  CAS  Google Scholar 

  17. L. Xiangcun, L. Zhang, G. He, Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon 99, 514–522 (2016). https://doi.org/10.1016/j.carbon.2015.12.076

    Article  CAS  Google Scholar 

  18. K. Rajesh, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of Interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 9, 8880–8890 (2017). https://doi.org/10.1021/acsami.6b14704

    Article  CAS  Google Scholar 

  19. S. Novoselov Kostya, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric eield effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  20. Z. Yanwu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  21. F. Leiyu, Z. Qin, Y. Huang, K. Peng, F. Wang, Y. Yan, Y. Chen, Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. Sci. Total Environ. 698, 134239 (2020). https://doi.org/10.1016/j.scitotenv.2019.134239

    Article  CAS  Google Scholar 

  22. W. Xuewan, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014). https://doi.org/10.1039/C4CS00141A

    Article  Google Scholar 

  23. L. Fei, C. Wang, X. Sui, M. Riaz, M. Xu, L. Wei, Y. Chen, Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy 1, 173–199 (2019). https://doi.org/10.1002/cey2.14

    Article  Google Scholar 

  24. L. Jiantong, M. Östling, Prevention of graphene restacking for performance boost of supercapacitors—a review. Curr. Comput.-Aided Drug Des. 3, 163–190 (2013). https://doi.org/10.3390/cryst3010163

    Article  CAS  Google Scholar 

  25. M. Shun, G. Lu, J. Chen, Three-dimensional graphene-based composites for energy applications. Nanoscale 7, 6924–6943 (2015). https://doi.org/10.1039/C4NR06609J

    Article  CAS  Google Scholar 

  26. R. Wang, C. Xu, J.M. Lee, High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19, 210–221 (2015). https://doi.org/10.1016/j.nanoen.2015.10.030

    Article  CAS  Google Scholar 

  27. M. Foroutan, L. Naji, Systematic evaluation of factors influencing electrochemical and morphological characteristics of free-standing 3D graphene hydrogels as electrode material for supercapacitors. Electrochim. Acta 301, 421–435 (2019). https://doi.org/10.1016/j.electacta.2019.01.161

    Article  CAS  Google Scholar 

  28. M. Sanjoy, U. Rana, S. Malik, Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J. Phys. Chem. C 121, 7573–7583 (2017). https://doi.org/10.1021/acs.jpcc.6b10978

    Article  CAS  Google Scholar 

  29. Y. Zhao, D. Huo, J. Bao, M. Yang, M. Chen, J. Hou, H. Fa, C. Hou, Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells. Sens. Actuators B 244, 1037–1044 (2017). https://doi.org/10.1016/j.snb.2017.01.029

    Article  CAS  Google Scholar 

  30. X. Zhao, Y. Jia, Z.H. Liu, GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors. J. Colloid Interface Sci. 536, 463–473 (2019). https://doi.org/10.1016/j.jcis.2018.10.071

    Article  CAS  Google Scholar 

  31. Y. Ma, J. Huang, X. Liu, F. Bu, L. Wang, Q. Xie, D.L. Peng, 3D graphene-encapsulated hierarchical urchin-like Fe3O4 porous particles with enhanced lithium storage properties. Chem. Eng. J. 327, 678–685 (2017). https://doi.org/10.1016/j.cej.2017.06.147

    Article  CAS  Google Scholar 

  32. Y. Zheng, X. Wang, S. Wei, B. Zhang, M. Yu, W. Zhao, J. Liu, Fabrication f porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance. Composites A 95, 237–247 (2017). https://doi.org/10.1016/j.compositesa.2017.01.015

    Article  CAS  Google Scholar 

  33. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tou, Improved synthesis of graphene oxide. ACS Nano 2, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  34. J. Li, J. Jiang, H. Feng, Z. Xu, S. Tang, P. Deng, D. Qian, Facile synthesis of 3D porous nitrogen-doped graphene as an efficient electrocatalyst for adenine sensing. RSC Adv. 6, 31565–31573 (2016). https://doi.org/10.1039/C6RA01864E

    Article  CAS  Google Scholar 

  35. M. Aghazadeh, M.R. Ganjali, One-pot electrochemical synthesis and assessment of super-capacitive and super-paramagnetic performances of Co2+ doped Fe3O4 ultra-fine particles. J. Mater. Sci. Mater. Electron 29, 2291–2300 (2018). https://doi.org/10.1007/s10854-017-8145-2

    Article  CAS  Google Scholar 

  36. M. Aghazadeh, M.R. Ganjali, Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: development of novel iron-based electrode. Ceram. Int. 44, 520–529 (2018). https://doi.org/10.1016/j.ceramint.2017.09.206

    Article  CAS  Google Scholar 

  37. A. Shahid, S.A. Khan, J. Eastoe, S.R. Hussaini, M.A. Morsy, Z.H. Yamani, Synthesis, characterization, and relaxometry studies of hydrophilic and hydrophobic superparamagnetic Fe3O4 nanoparticles for oil reservoir applications. Colloids Surf. A 543, 133–143 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.002

    Article  CAS  Google Scholar 

  38. M. Aghazadeh, M.R. Ganjali, Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization. J. Mater. Sci. 53, 295–308 (2018). https://doi.org/10.1007/s10853-017-1514-7

    Article  CAS  Google Scholar 

  39. L. Mao, C. Guan, X. Huang, Q. Ke, Y. Zhang, J. Wang, 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim. Acta 196, 653–660 (2016). https://doi.org/10.1016/j.electacta.2016.02.084

    Article  CAS  Google Scholar 

  40. M. Mokhtar, M.A. Mousa, M. Khairy, A.A. Amer, A new and exciting generation of visible light driven photocatalyst and energy storage application. ACS Omega 3, 1801–1814 (2018). https://doi.org/10.1021/acsomega.7b01806

    Article  CAS  Google Scholar 

  41. A.K. Mageed, D.A.B. Radiah, A. Salmiaton, S. Izhar, M. Abdul Razak, H. Yusoff, F. Yasin, S. Kamarudin, Preparation and characterization of nitrogen doped reduced graphene oxide sheet. Int. J. Appl. Chem. 12, 104–108 (2016)

    Google Scholar 

  42. X. Xu, T. Yuan, Y. Zhou, Y. Li, J. Lu, X. Tian, D. Wang, J. Wang, Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 39, 16043–16052 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.079

    Article  CAS  Google Scholar 

  43. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T.N. Narayanan, D.K. Pattanayak, On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Adv. 4, 38689–38697 (2014). https://doi.org/10.1039/C4RA04927F

    Article  CAS  Google Scholar 

  44. Y. Huang, A. Buffa, H. Deng, S. Sarkar, Y. Ouyang, X. Jiao, Q. Hao, D. Mandler, Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications. J. Power Sources 439, 227046 (2019). https://doi.org/10.1016/j.jpowsour.2019.227046

    Article  CAS  Google Scholar 

  45. Y. Jiang, Z.J. Jiang, L. Yang, S. Cheng, M. Liu, A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 3, 11847–11856 (2015). https://doi.org/10.1039/C5TA01848J

    Article  CAS  Google Scholar 

  46. P.R. Kumar, Y.H. Jung, K.K. Bharathi, C.H. Lim, D.K. Kim, High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim. Acta 146, 503–510 (2014). https://doi.org/10.1016/j.electacta.2014.09.081

    Article  CAS  Google Scholar 

  47. L. Li, H. Wang, Z. Xie, C. An, G. Jiang, Y. Wang, 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes. J. Alloys Compd. 815, 152337 (2020). https://doi.org/10.1016/j.jallcom.2019.152337

    Article  CAS  Google Scholar 

  48. A. Radoń, P. Włodarczyk, A. Drygała, D. Łukowiec, Electrical properties of epoxy nanocomposites containing Fe3O4 nanoparticles and Fe3O4 nanoparticles deposited on the surface of electrochemically exfoliated and oxidized graphite. Appl. Surf. Sci. 474, 66–77 (2019). https://doi.org/10.1016/j.apsusc.2018.05.045

    Article  CAS  Google Scholar 

  49. D. Zhao, X. Gao, C. Wu, R. Xie, S. Feng, C. Chen, Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI). Appl. Surf. Sci. 384, 1–9 (2016). https://doi.org/10.1016/j.apsusc.2016.05.022

    Article  CAS  Google Scholar 

  50. H.L. Guo, P. Su, X. Kang, S.K. Ning, Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A 1, 2248–2255 (2013). https://doi.org/10.1039/C2TA00887D

    Article  CAS  Google Scholar 

  51. L. Yanyun, T. Jing, G. Xu, J. Tian, M. Dong, Q. Shao, B. Wang, 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13–22 (2018). https://doi.org/10.1016/j.polymer.2018.06.046

    Article  CAS  Google Scholar 

  52. L. Wang, X. Zhang, S. Wang, Y. Li, B. Qian, X. Jiang, G. Yang, Ultrasonic-assisted synthesis of amorphous Fe3O4 with a high specific surface area and improved capacitance for supercapacitor. Powder Technol. 256, 499–505 (2014). https://doi.org/10.1016/j.powtec.2014.01.077

    Article  CAS  Google Scholar 

  53. S.Y. Wang, K.C. Ho, S.L. Kuo, N.L. Wu, Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J. Electrochem. Soc. 153, A75–A80 (2006)

    Article  CAS  Google Scholar 

  54. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, A. Behzad, Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations. J. Mater. Sci. Mater. Electron 28, 18121–18129 (2017). https://doi.org/10.1007/s10854-017-7757-x

    Article  CAS  Google Scholar 

  55. Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 245, 101–106 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.035

    Article  CAS  Google Scholar 

  56. X. Shuxiao, F. Dong, J. Li, Flexible solid-state supercapacitor based on carbon nanotube/Fe3O4/reduced graphene oxide binary films. Chem. Select 4, 437–440 (2019). https://doi.org/10.1002/slct.201803223

    Article  CAS  Google Scholar 

  57. X. Zhu, D. Hou, H. Tao, M. Li, Simply synthesized N-doped carbon supporting Fe3O4 nanocomposite for high performance supercapacitor. J. Alloys Compd. 821, 153580 (2020). https://doi.org/10.1016/j.jallcom.2019.153580

    Article  CAS  Google Scholar 

  58. A. Devi, S. Nongthombam, R. Bhujel, S. Rai, B.P. Swain, Investigation of chemical bonding and supercapacitivity properties of Fe3O4-rGO nanocomposites for supercapacitor applications. Diamond Relat. Mater. 104, 107756 (2020). https://doi.org/10.1016/j.diamond.2020.107756

    Article  CAS  Google Scholar 

  59. T. Arun, K. Prabakaran, R. Udayabhaskar, R.V. Mangalaraja, A. Akbari-Fakhrabadi, Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Appl. Surf. Sci. 485, 147–157 (2019). https://doi.org/10.1016/j.apsusc.2019.04.177

    Article  CAS  Google Scholar 

  60. H. Fan, R. Niu, J. Duan, W. Liu, W. Shen, Fe3O4@carbon Nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475–194835 (2016). https://doi.org/10.1021/acsami.6b05415

    Article  CAS  Google Scholar 

  61. I. Oh, M. Kim, J. Kim, Controlling hydrazine reduction to deposit iron oxides on oxidized activated carbon for supercapacitor application. Energy 86, 292–299 (2016). https://doi.org/10.1016/j.energy.2015.04.040

    Article  CAS  Google Scholar 

  62. L. Wang, J. Yu, X. Dong, X. Li, Y. Xie, S. Chen, P. Li, H. Hou, Y. Song, Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain. Chem. Eng. 4, 1531–2153 (2016). https://doi.org/10.1021/acssuschemeng.5b01474

    Article  CAS  Google Scholar 

  63. S. Kaipannan, K. Govindarajan, S. Sundaramoorthy, S. Marappan, Waste toner-derived carbon/Fe3O4 nanocomposite for high-performance supercapacitor. ACS Omega 4, 15798–15805 (2019). https://doi.org/10.1021/acsomega.9b01337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Mohammad Ghannadi-Maragheh from Nuclear Science and Technology Research Institute (NSTRI) and Dr. Mahdi Farhoudi from Technical and Vocational University Tehran are gratefully acknowledged for the fruitful discussions they provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Aghazadeh or Hamzeh Forati-Rad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Forati-Rad, H., Yavari, K. et al. On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors. J Mater Sci: Mater Electron 32, 13156–13176 (2021). https://doi.org/10.1007/s10854-021-05843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05843-4

Navigation