Skip to main content
Log in

W- and Mo-based polyoxometalates (POM) as interlayer in Al/n–Si photodiodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

W- and Mo-based POM layers were fabricated by a chemical method successfully. The FT-IR and NMR spectrometer were performed to obtain structural behaviors of the W- and Mo-based POMs. SEM and AFM image used to reveal the surface morphologies of the W- and Mo-based POMs. The pinhole and crack-free porous surfaces were obtained. Electrochemical behaviors of the W- and Mo-based POMs were studied a galvanostat. Then, the W- and Mo-based POM layers used as film layer between the Al and n-Si layer to obtain POM interlayered photodiodes Thus, the Al/n–Si (reference), Al/WPOM/n–Si and Al/MoPOM/n–Si photodiodes were fabricated by evaporating of the metallic and ohmic contact in a thermal evaporator. I–V measurements were performed on the photodiodes under dark and various light illumination intensities. The photodiodes exhibited good rectifying properties, but rectifying behavior decreased with POM interlayers and increasing light power intensity. The reverse currents of the Al/n–Si photodiode increased almost 1000 times at 100 mW/cm2. However, they increased almost 100 times for the Al/WPOM/n–Si and Al/MoPOM/n–Si photodiodes. Whereas the forward currents did not change for Al/n–Si photodiode, they increased with increasing light power in the case of Al/WPOM/n–Si and Al/MoPOM/n–Si photodiodes. Various diode parameters such as ideality factor, barrier height and series resistance values were calculated by various techniques and discussed in details. The detector parameters such as responsivity, photosensitivity and specific detectivity values were accounted and compared for the Al/n–Si, Al/WPOM/n–Si and Al/MoPOM/n–Si photodiodes with increasing light power. The POM interlayered photodiodes and photodetectors can be improved for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.-F. Song, R. Tsunashima, Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev. 41, 7384 (2012). https://doi.org/10.1039/c2cs35143a

    Article  CAS  Google Scholar 

  2. R. Neumann, Applications of polyoxometalates in homogeneous catalysis, in Polyoxometalate molecular science. (Springer, Netherlands, Dordrecht, 2003), pp. 327–349. https://doi.org/10.1007/978-94-010-0091-8_11

    Chapter  Google Scholar 

  3. C.L. Hill, Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry. J. Mol. Catal. A 262, 2–6 (2007). https://doi.org/10.1016/j.molcata.2006.08.042

    Article  CAS  Google Scholar 

  4. B. Hasenknopf, Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front. Biosci. 10, 275 (2005). https://doi.org/10.2741/1527

    Article  CAS  Google Scholar 

  5. M. Vazylyev, D. Sloboda-Rozner, A. Haimov, G. Maayan, R. Neumann, Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top. Catal. 34, 93–99 (2005). https://doi.org/10.1007/s11244-005-3793-5

    Article  CAS  Google Scholar 

  6. Y. Ji, L. Huang, J. Hu, C. Streb, Y.-F. Song, Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 8, 776–789 (2015). https://doi.org/10.1039/C4EE03749A

    Article  CAS  Google Scholar 

  7. T. Yamase, Polyoxometalates Active against Tumors, Viruses, and Bacteria (Springer, Berlin, 2003), pp. 65–116. https://doi.org/10.1007/978-3-642-41004-8_4

    Book  Google Scholar 

  8. M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño, E. Coronado, S. Hill, Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016). https://doi.org/10.1038/nature16984

    Article  CAS  Google Scholar 

  9. J.M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 41, 7464 (2012). https://doi.org/10.1039/c2cs35205b

    Article  CAS  Google Scholar 

  10. S. Omwoma, W. Chen, R. Tsunashima, Y.-F. Song, Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord. Chem. Rev. 258–259, 58–71 (2014). https://doi.org/10.1016/j.ccr.2013.08.039

    Article  CAS  Google Scholar 

  11. S.-M. Wang, L. Liu, W.-L. Chen, E.-B. Wang, High performance visible and near-infrared region electrochromic smart windows based on the different structures of polyoxometalates. Electrochim. Acta 113, 240–247 (2013). https://doi.org/10.1016/j.electacta.2013.09.048

    Article  CAS  Google Scholar 

  12. A.V. Anyushin, A. Kondinski, T.N. Parac-Vogt, Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem. Soc. Rev. 49, 382–432 (2020). https://doi.org/10.1039/C8CS00854J

    Article  CAS  Google Scholar 

  13. C. Brevard, R. Schimpf, G. Tourne, C.M. Tourne, Tungsten-183 NMR: a complete and unequivocal assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional tungsten-183 NMR techniques. J. Am. Chem. Soc. 105, 7059–7063 (1983). https://doi.org/10.1021/ja00362a008

    Article  CAS  Google Scholar 

  14. G.M. Brown, M.R. Noe-Spirlet, W.R. Busing, H.A. Levy, Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403−). The true structure of Keggin’s `pentahydrate’ from single-crystal X-ray and neutron diffraction data. Acta Crystallogr B 33, 1038–1046 (1977). https://doi.org/10.1107/S0567740877005330

    Article  Google Scholar 

  15. P.J. Domaille, The 1- and 2-dimensional tungsten-183 and vanadium-51 NMR characterization of isopolymetalates and heteropolymetalates. J. Am. Chem. Soc. 106, 7677–7687 (1984). https://doi.org/10.1021/ja00337a004

    Article  CAS  Google Scholar 

  16. B. Dawson, The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)·14H2O. Acta Crystallogr. 6, 113–126 (1953). https://doi.org/10.1107/S0365110X53000466

    Article  CAS  Google Scholar 

  17. R.G. Finke, M.W. Droege, P.J. Domaille, Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional tungsten-183 NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = cobalt, copper, zinc). Inorg. Chem. 26, 3886–3896 (1987). https://doi.org/10.1021/ic00270a014

    Article  CAS  Google Scholar 

  18. M. Tountas, Y. Topal, M. Kus, M. Ersöz, M. Fakis, P. Argitis, M. Vasilopoulou, Water-soluble lacunary polyoxometalates with excellent electron mobilities and hole blocking capabilities for high efficiency fluorescent and phosphorescent organic light emitting diodes. Adv. Funct. Mater. 26, 2655–2665 (2016). https://doi.org/10.1002/adfm.201504832

    Article  CAS  Google Scholar 

  19. M. Tountas, Y. Topal, A. Verykios, A. Soultati, A. Kaltzoglou, T.A. Papadopoulos, F. Auras, K. Seintis, M. Fakis, L.C. Palilis, D. Tsikritzis, S. Kennou, A. Fakharuddin, L. Schmidt-Mende, S. Gardelis, M. Kus, P. Falaras, D. Davazoglou, P. Argitis, M. Vasilopoulou, A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO2 cathode interlayers for highly efficient and extremely stable polymer solar cells. J. Mater. Chem. C 6, 1459–1469 (2018). https://doi.org/10.1039/C7TC04960A

    Article  CAS  Google Scholar 

  20. M. Tountas, Y. Topal, E. Polydorou, A. Soultati, A. Verykios, A. Kaltzoglou, T.A. Papadopoulos, F. Auras, K. Seintis, M. Fakis, L.C. Palilis, D. Tsikritzis, S. Kennou, M. Koutsoureli, G. Papaioannou, M. Ersöz, M. Kus, P. Falaras, D. Davazoglou, P. Argitis, M. Vasilopoulou, Low work function lacunary polyoxometalates as electron transport interlayers for inverted polymer solar cells of improved efficiency and stability. ACS Appl. Mater. Interfaces 9, 22773–22787 (2017). https://doi.org/10.1021/acsami.7b04600

    Article  CAS  Google Scholar 

  21. A. Kyndiah, A. Ablat, S. Guyot-Reeb, T. Schultz, F. Zu, N. Koch, P. Amsalem, S. Chiodini, T. Yilmaz Alic, Y. Topal, M. Kus, L. Hirsch, S. Fasquel, M. Abbas, A multifunctional ınterlayer for solution processed high performance ındium oxide transistors. Sci. Rep. 8, 10946 (2018). https://doi.org/10.1038/s41598-018-29220-0

    Article  CAS  Google Scholar 

  22. Q. Wang, Y. Shao, P. Gong, X. Shi, Metal-2D multilayered semiconductor junctions: layer-number dependent Fermi-level pinning. J. Mater. Chem. C 8, 3113–3119 (2020). https://doi.org/10.1039/c9tc06331e

    Article  CAS  Google Scholar 

  23. I.A. Digdaya, G.W.P. Adhyaksa, B.J. Trześniewski, E.C. Garnett, W.A. Smith, Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms15968

    Article  CAS  Google Scholar 

  24. M.O. Erdal, A. Kocyigit, M. Yıldırım, The rate of Cu doped TiO2 interlayer effects on the electrical characteristics of Al/Cu:TiO2/n-Si (MOS) capacitors depend on frequency and voltage. Microelectron. Reliab. 106, 113591 (2020). https://doi.org/10.1016/j.microrel.2020.113591

    Article  CAS  Google Scholar 

  25. H.E. Lapa, A. Kökce, A.F. Özdemir, A. Altlndal, Investigation of dielectric properties, electric modulus and conductivity of the Au/Zn-doped PVA/n-4H-SiC (MPS) structure using impedance spectroscopy method. Z. Fur Phys. Chem. (2019). https://doi.org/10.1515/zpch-2017-1091

    Article  Google Scholar 

  26. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Phys. B 587, 412122 (2020). https://doi.org/10.1016/j.physb.2020.412122

    Article  CAS  Google Scholar 

  27. A. Kocyigit, M. Yilmaz, S. Aydogan, U. Incekara, Y. Sahin, The performance of chitosan layer in Au/n-Si sandwich structures as a barrier modifier. Polym. Test. 89, 106546 (2020). https://doi.org/10.1016/j.polymertesting.2020.106546

    Article  CAS  Google Scholar 

  28. R. Contant, Relations entre les tungstophosphates apparentés à l’anion PW12O403−. Synthèse et propriétés d’un nouveau polyoxotungstophosphate lacunaire K10P2W20O70·24H2O. Can. J. Chem. 65, 568–573 (1987). https://doi.org/10.1139/v87-100

    Article  CAS  Google Scholar 

  29. G. Turgut, S. Aydogan, M. Yilmaz, A. Özmen, H. Kacus, An investigation of spray deposited CdO films and CdO/p-Si heterojunction at different substrate temperatures. JOM 73, 566–573 (2021). https://doi.org/10.1007/s11837-020-04514-9

    Article  CAS  Google Scholar 

  30. A. Özmen, S. Aydogan, M. Yilmaz, Fabrication of spray derived nanostructured n-ZnO/p-Si heterojunction diode and investigation of its response to dark and light. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.04.210

    Article  Google Scholar 

  31. M. Guzel, Y. Torlak, E. Karatas, M. Ak, Optical and electrical properties of monolacunary keggin-type polyoxometalate/star-shaped polycarbazole nanocomposite film. J. Electrochem. Soc. 166, H313–H319 (2019). https://doi.org/10.1149/2.0531908jes

    Article  CAS  Google Scholar 

  32. J. Niu, M. Li, J. Wang, Organosilyl derivatives of trivacant tungstophosphate of general formula α-A-[PW9O34(RSiO)3(RSi)]3−. J. Organomet. Chem. 675, 84–90 (2003). https://doi.org/10.1016/S0022-328X(03)00252-3

    Article  CAS  Google Scholar 

  33. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science (2001). https://doi.org/10.1126/science.291.5504.630

    Article  Google Scholar 

  34. A.S. Cherevan, S.P. Nandan, I. Roger, R. Liu, C. Streb, D. Eder, Polyoxometalates on functional substrates: concepts, synergies, and future perspectives. Adv. Sci. 7, 1903511 (2020). https://doi.org/10.1002/advs.201903511

    Article  CAS  Google Scholar 

  35. M. Raula, G. Ganor, M. Saganovich, O. Zeiri, Y. Wang, M.R. Chierotti, R. Gobetto, I.A. Weinstock, Polyoxometalate complexes of anatase-titanium dioxide cores in water. Angew. Chem. - Int. Ed. 54, 12416–12421 (2015). https://doi.org/10.1002/anie.201501941

    Article  CAS  Google Scholar 

  36. M. Ishaque Khan, L.S. Swenson, Open-framework hybrid materials and composites from polyoxometalates, in New future developments in catalalysis. Hybrid Materials Composites Organocatalysts. (Elsevier, Amsterdam, 2013), pp. 27–54

    Chapter  Google Scholar 

  37. A. Hiskia, A. Mylonas, E. Papaconstantinou, Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 30, 62–69 (2001). https://doi.org/10.1039/a905675k

    Article  CAS  Google Scholar 

  38. P. Kormali, A. Troupis, T. Triantis, A. Hiskia, E. Papaconstantinou, Photocatalysis by polyoxometallates and TiO2: a comparative study. Catal. Today 124, 149–155 (2007). https://doi.org/10.1016/j.cattod.2007.03.032

    Article  CAS  Google Scholar 

  39. A. Proust, R. Thouvenot, P. Gouzerh, Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem. Commun. (2008). https://doi.org/10.1039/b715502f

    Article  Google Scholar 

  40. D. Agustin, C. Coelho, A. Mazeaud, P. Herson, A. Proust, R. Thouvenot, Organic-inorganic hybrids based on polyoxometalates. Part 8. Synthesis and spectroscopic characterization of the heterosilylated anions [PW(9)O(34)((t)BuSiO)(3)(SiR)](3-) (R = -CH(3), -CH=CH(2), -CH(2)-CH=CH(2), -(Ci(2))(4)-CH=CH(2)) - X-ray crystal stru. Z. Fur Anorg. Und Allg. Chem. (2004). https://doi.org/10.1002/zaac.200400276

    Article  Google Scholar 

  41. J. Niu, M. Li, J. Wang, Organosilyl derivatives of trivacant tungstophosphate of general formula α-A-[PW9O34(RSiO)3 (RSi)]3-: synthesis and structure determination by X-ray crystallography. J. Organomet. Chem. (2003). https://doi.org/10.1016/S0022-328X(03)00252-3

    Article  Google Scholar 

  42. D. Agustin, J. Dallery, C. Coelho, A. Proust, R. Thouvenot, Synthesis, characterization and study of the chromogenic properties of the hybrid polyoxometalates [PW11O39(SiR)2O]3- (R = Et, (CH2)nCH{double bond, long}CH2 (n = 0, 1, 4), CH2CH2SiEt3, CH2CH2SiMe2Ph). J. Organomet. Chem. (2007). https://doi.org/10.1016/j.jorganchem.2006.10.027

    Article  Google Scholar 

  43. T.M. Anderson, W.A. Neiwert, M.L. Kirk, P.M.B. Piccoli, A.J. Schultz, T.F. Koetzle, D.G. Musaev, K. Morokuma, R. Cao, C.L. Hill, A late-transition metal oxo complex: K7Na9[O=Pt IV(H2O)L2], L = [PW9O 34]9-. Science (2004). https://doi.org/10.1126/science.1104696

    Article  Google Scholar 

  44. R. Ayranci, Y. Torlak, T. Soganci, M. Ak, Trilacunary Keggin type polyoxometalate-conducting polymer composites for amperometric glucose detection. J. Electrochem. Soc. 165, B638–B643 (2018). https://doi.org/10.1149/2.1061813jes

    Article  CAS  Google Scholar 

  45. C.J. Wu, G.J. Wang, C.H. Kao, Z.J. Yang, H. Chen, Y. Sen Lin, C.F. Lin, J. Han, Photon-recycling in ultraviolet GaN-based photodiodes with porous AlGaN distributed bragg reflectors. ACS Appl. Nano Mater. 2, 5044–5048 (2019). https://doi.org/10.1021/acsanm.9b00973

    Article  CAS  Google Scholar 

  46. J. Kim, S.S. Joo, K.W. Lee, J.H. Kim, D.H. Shin, S. Kim, S.H. Choi, Near-ultraviolet-sensitive graphene/porous silicon photodetectors. ACS Appl. Mater. Interfaces 6, 20880–20886 (2014). https://doi.org/10.1021/am5053812

    Article  CAS  Google Scholar 

  47. M. Laurans, K. Dalla Francesca, F. Volatron, G. Izzet, D. Guerin, D. Vuillaume, S. Lenfant, A. Proust, Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions. Nanoscale 10, 17156–17165 (2018). https://doi.org/10.1039/C8NR04946G

    Article  CAS  Google Scholar 

  48. T. Ye, J. Wang, G. Dong, Y. Jiang, C. Feng, Y. Yang, Recent progress in the application of polyoxometalates for dye-sensitized/organic solar cells. Chin. J. Chem. 34, 747–756 (2016). https://doi.org/10.1002/cjoc.201600231

    Article  CAS  Google Scholar 

  49. H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yıldırım, Electrical properties of Al/PCBM:ZnO/p-Si heterojunction for photodiode application. J. Alloys Compd. 827, 154279 (2020). https://doi.org/10.1016/j.jallcom.2020.154279

    Article  CAS  Google Scholar 

  50. H. Zhang, T. Wang, W. Chen, Polyoxometalate modified all-weather solar cells for energy harvesting. Electrochim. Acta 330, 135215 (2020). https://doi.org/10.1016/j.electacta.2019.135215

    Article  CAS  Google Scholar 

  51. D.E. Yıldız, D.H. Apaydın, L. Toppare, A. Cirpan, Effect of layer thickness on the electrical parameters and conduction mechanisms of conjugated polymer-based heterojunction diode. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44817

    Article  Google Scholar 

  52. M. Özer, D.E. Yıldız, Ş Altındal, M.M. Bülbül, Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes. Solid State Electron. 51, 941–949 (2007). https://doi.org/10.1016/J.SSE.2007.04.013

    Article  Google Scholar 

  53. H.H. Gullu, D.E. Yildiz, L. Toppare, A. Cirpan, Electrical characteristics of organic heterojunction with an alternating benzotriazole and fluorene containing copolymer. J. Mater. Sci. Mater. Electron. 31, 18816–18831 (2020). https://doi.org/10.1007/s10854-020-04421-4

    Article  CAS  Google Scholar 

  54. D.E. Yıldız, H.H. Gullu, L. Toppare, A. Cirpan, Analysis of temperature-dependent forward and leakage conduction mechanisms in organic thin film heterojunction diode with fluorine-based PCBM blend. J. Mater. Sci. Mater. Electron. 31, 15233–15242 (2020). https://doi.org/10.1007/s10854-020-04088-x

    Article  CAS  Google Scholar 

  55. A. Kocyigit, İ Karteri, I. Orak, S. Uruş, M. Çaylar, The structural and electrical characterization of Al/GO-SiO2/p-Si photodiode. Phys. E. 103, 452–458 (2018). https://doi.org/10.1016/j.physe.2018.06.006

    Article  CAS  Google Scholar 

  56. H.H. Gullu, D.E. Yildiz, Analysis of forward and reverse biased current–voltage characteristics of Al/Al2O3/n-Si Schottky diode with atomic layer deposited Al2O3 thin film interlayer. J. Mater. Sci. Mater. Electron. 30, 19383–19393 (2019). https://doi.org/10.1007/s10854-019-02300-1

    Article  CAS  Google Scholar 

  57. D.E. Yildiz, Ş Altindal, Z. Tekeli, M. Özer, The effects of surface states and series resistance on the performance of Au/SnO2/n-Si and Al/SnO2/p-Si (MIS) Schottky barrier diodes. Mater. Sci. Semicond. Process. 13, 34–40 (2010). https://doi.org/10.1016/j.mssp.2010.02.004

    Article  CAS  Google Scholar 

  58. L.D. Rao, V.R. Reddy, Electrical parameters and series resistance analysis of Au/Y/p-InP/Pt Schottky barrier diode at room temperature, in AIP conference proceedings. (AIP Publishing LLC, College Park, 2016), p. 120020. https://doi.org/10.1063/1.4948092

    Chapter  Google Scholar 

  59. M. Yilmaz, A. Kocyigit, B.B. Cirak, H. Kacus, U. Incekara, S. Aydogan, The comparison of Co/hematoxylin/n-Si and Co/hematoxylin/p-Si devices as rectifier for a wide range temperature. Mater. Sci. Semicond. Process. 113, 105039 (2020). https://doi.org/10.1016/j.mssp.2020.105039

    Article  CAS  Google Scholar 

  60. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979). https://doi.org/10.1063/1.325607

    Article  CAS  Google Scholar 

  61. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986). https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  62. Ş Karataş, Effect of series resistance on the electrical characteristics and interface state energy distributions of Sn/p-Si (MS) Schottky diodes. Microelectron. Eng. 87, 1935–1940 (2010). https://doi.org/10.1016/j.mee.2009.11.168

    Article  CAS  Google Scholar 

  63. A. Kocyigit, İ Orak, The electrical characterization effect of insulator layer between semiconductor and metal. J. Inst. Sci. Technol. 6, 57–67 (2016). https://doi.org/10.21597/jist.2016321840

    Article  Google Scholar 

  64. D.E. Yıldız, Electrical properties of Au–Cu/ZnO/p-Si diode fabricated by atomic layer deposition. J. Mater. Sci. Mater. Electron. 29, 17802–17808 (2018). https://doi.org/10.1007/s10854-018-9889-z

    Article  CAS  Google Scholar 

  65. A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Comparison of electrical properties of MS and MPS type diode in respect of (In2O3-PVP) interlayer. Phys. B 576, 411733 (2020). https://doi.org/10.1016/j.physb.2019.411733

    Article  CAS  Google Scholar 

  66. O. Dayan, A. Gencer Imer, A.G. Al-Sehemi, N. Özdemir, A. Dere, Z. Şerbetçi, A.A. Al-Ghamdi, F. Yakuphanoglu, Photoresponsivity and photodetectivity properties of copper complex-based photodiode. J. Mol. Struct. 1200, 127062 (2020). https://doi.org/10.1016/j.molstruc.2019.127062

    Article  CAS  Google Scholar 

  67. Ö.B. Sürücü, H.H. Güllü, M. Terlemezoglu, D.E. Yildiz, M. Parlak, Determination of current transport characteristics in Au-Cu/CuO/n-Si Schottky diodes. Phys. B 570, 246–253 (2019). https://doi.org/10.1016/j.physb.2019.06.024

    Article  CAS  Google Scholar 

  68. H.H. Gullu, D.E. Yildiz, Ö. Bayrakli Sürücü, M. Terlemezoglu, M. Parlak, Temperature dependence of electrical properties in In/Cu2ZnSnTe4/Si/Ag diodes. Bull. Mater. Sci. 42, 45 (2019). https://doi.org/10.1007/s12034-018-1713-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esma Yenel or Murat Yıldırım.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yenel, E., Torlak, Y., Kocyigit, A. et al. W- and Mo-based polyoxometalates (POM) as interlayer in Al/n–Si photodiodes. J Mater Sci: Mater Electron 32, 12094–12110 (2021). https://doi.org/10.1007/s10854-021-05838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05838-1

Navigation