Skip to main content
Log in

Analysis of forward and reverse biased current–voltage characteristics of Al/Al2O3/n-Si Schottky diode with atomic layer deposited Al2O3 thin film interlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dark current–voltage (\(I{-}V\)) characteristics of Al/Al2O3/n-Si Schottky diode are investigated in a wide temperature range of 260–360 K. The diode shows four orders of magnitude rectification. In forward and reverse bias regions, the temperature-dependent \(I{-}V\) characteristics are detailed in terms of diode parameters and dominant conduction mechanisms. Due to the existence of Al2O3 film layer and series resistance in the diode structure, current flow under the forward bias is observed in a deviation from pure exponential characteristics. The diode parameters are estimated from thermionic emission model with non-unity ideality factor, and this non-ideal behavior is resulted in the ideality factors greater than two. In addition to these values, zero-bias barrier height is found to be strongly temperature dependent, and this variation indicates a presence of inhomogeneties in the barrier according to Gaussian distribution (GD) approximation. This fact is investigated plotting characteristic plot of this model and by extracting mean barrier height with its standard deviation. In order to complete the work on the forward IV region, the carrier transport characteristics of the diode are explained on the basis of thermionic emission mechanism with a GD of the harrier heights. In accordance with this approximation, the conventional Richardson plot exhibits non-linearity behavior and modified current relation based on GD model is used to calculate mean barrier height and Richardson constant. In addition, the values of parasitic resistances are determined using Ohm’s law as a function of temperature for all bias voltage spectra. In the reverse bias region, Poole–Frenkel effect is found to be dominant on the conduction associated with the barrier lowering, and barrier height in the emission process from the trapped states, and high-frequency dielectric constant of Al2O3 film layer is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Kimura, Jpn. J. Appl. Phys. 58, 090503 (2019)

    Google Scholar 

  2. M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, A. Calleja, G. Cheng, M. Cuoco, R. Dittmann, B. Dkhil, I. El Baggari, M. Fanciulli, I. Fina, E. Fortunatop, C. Frontera, S. Fujita, V. Garcia, S.T.B. Goennenwein, C.-G. Granqvist, J. Grollier, R. Gross, A. Hagfeldt, G. Herranz, K. Hono, E. Houwman, M. Huijben, A. Kalaboukhov, D.J. Keeble, G. Koster, L.F. Kourkoutis, J. Levy, M. Lira-Cantu, J.L. MacManus-Driscoll, J. Mannhart, R. Martins, S. Menzel, T. Mikolajick, M. Napari, M.D. Nguyen, G. Niklasson, C. Paillard, S. Panigrahi, G. Rijnders, F. Sanchez, P. Sanchis, S. Sanna, D.G. Schlom, U. Schroede, K.M. Shen, A. Siemon, M. Spreitzer, H. Sukegawa, R. Tamayo, J. van den Brink, N. Pryds, F.M. Granozio, Appl. Surf. Sci. 482, 1 (2019)

    CAS  Google Scholar 

  3. R. Chen, L. Lan, Nanotechnology 30, 312001 (2019)

    Google Scholar 

  4. S. Alptekin, A. Tataroglu, S. Altindal, J. Mater. Sci. 30, 6853 (2019)

    CAS  Google Scholar 

  5. G. Ding, M. Wei, G. Surucu, Z. Liang, X. Wang, Appl. Surf. Sci. 491, 750 (2019)

    CAS  Google Scholar 

  6. I. Tascioglu, S.O. Tan, S. Altindal, J. Mater. Sci. 30, 11536 (2019)

    CAS  Google Scholar 

  7. S.O. Tan, H. Uslu Tecimer, O. Cicek, H. Tecimer, S. Altindal, J. Mater. Sci. 28, 4951 (2017)

    CAS  Google Scholar 

  8. C. Tsiarapas, D. Girginoudi, N. Georgular, Superlattices Microstruct. 75, 171 (2014)

    CAS  Google Scholar 

  9. R. Dalven, Metal-semiconductor and metal-insulator-semiconductor devices, Introduction to Applied Solid State Physics (Springer, Boston, 1990)

    Google Scholar 

  10. P.M. Gammon, A. Perez-Tomas, A.A. Shah, O. Vavasour, E. Donchev, J.S. Pang, M. Myronov, C.A. Fisher, M.R. Jennings, D.R. Leadley, P.A. Mawby, J. Appl. Phys. 114, 223704 (2013)

    Google Scholar 

  11. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2006)

    Google Scholar 

  12. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices (Wiley, New Jersey, 2007)

    Google Scholar 

  13. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Google Scholar 

  14. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    CAS  Google Scholar 

  15. H.H. Gullu, D.E. Yildiz, O. Bayrakli Surucu, M. Terlemezoglu, M. Parlak, Bull. Mater. Sci. 42, 45 (2019)

    Google Scholar 

  16. S. Altindal, H. Kanbur, D.E. Yildiz, M. Parlak, Appl. Surf. Sci. 253, 5056 (2007)

    CAS  Google Scholar 

  17. E. Arslan, S. Altindal, S. Ural, O.A. Kayal, M. Ozturk, E. Ozbay, J. Vac. Sci. Technol. B 36, 061209 (2018)

    Google Scholar 

  18. H.H. Gullu, Bull. Mater. Sci. 42, 89 (2019)

    Google Scholar 

  19. D.E. Yildiz, M. Karakus, L. Toppare, A. Cirpan, Mater. Sci. Semicond. Process. 28, 84 (2014)

    CAS  Google Scholar 

  20. E. Arslan, S. Butun, E. Ozbay, Appl. Phys. Lett. 94, 142106 (2009)

    Google Scholar 

  21. P.K. Rao, B. Park, S.T. Lee, Y.K. Noh, M.D. Kim, J.E. Oh, J. Appl. Phys. 110, 013716 (2011)

    Google Scholar 

  22. H. Schroeder, J. Appl. Phys. 117, 215103 (2015)

    Google Scholar 

  23. H. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. 19, 915 (2008)

    CAS  Google Scholar 

  24. J. Yota, H. Shen, R. Ramanathan, J. Vac. Sci. Technol. A 31, 01A134 (2013)

    Google Scholar 

  25. M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid State Electron. 51, 941 (2007)

    Google Scholar 

  26. A. Tataroglu, S. Altindal, M.M. Bulbul, Microelectron. Eng. 81, 140 (2005)

    CAS  Google Scholar 

  27. M.D. Groner, J.W. Elam, F.H. Fabreguette, S.M. George, Thin Solid Films 413, 186 (2002)

    CAS  Google Scholar 

  28. A. Turut, A. Karabulut, K. Erderha, N. Biyikli, Mater. Res. Express 2, 046301 (2015)

    Google Scholar 

  29. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    CAS  Google Scholar 

  30. F. Yigiterol, H.H. Gullu, O. Bayrakli, D.E. Yildiz, J. Electron. Mater. 47, 2979 (2018)

    CAS  Google Scholar 

  31. L. Zhang, H.C. Jiang, C. Liu, J.W. Dong, P. Chow, J. Phys. D 40, 3707 (2007)

    CAS  Google Scholar 

  32. Y. Jang, S. Shin, S. Yi, M. Hong, Thin Solid Films 674, 52 (2019)

    CAS  Google Scholar 

  33. J.A. García-Valenzuela, R. Rivera, A.B. Morales-Vilches, L.G. Gerling, J.M. Asensia, C. Voz, J. Bertomeu, J. Andreu, Thin Solid Films 619, 288 (2016)

    Google Scholar 

  34. S.Y. Lien, C.H. Yang, K.C. Wu, C.Y. Kung, Nanoscale Res. Lett. 10, 93 (2015)

    Google Scholar 

  35. J. Singh, Semiconductor Devices: Basic Principles (Wiley India, New Delhi, 2007)

    Google Scholar 

  36. J. Yang, B.S. Eller, R.J. Nemanich, J. Appl. Phys. 116, 123702 (2014)

    Google Scholar 

  37. Z. Guo, F. Ambrosio, A. Pasquarello, Appl. Phys. Lett. 109, 062903 (2016)

    Google Scholar 

  38. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    CAS  Google Scholar 

  39. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    CAS  Google Scholar 

  40. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    CAS  Google Scholar 

  41. A. Tataroglu, R.Z. Pur, Phys. Scr. 88, 015801 (2013)

    Google Scholar 

  42. H.H. Gullu, O. Bayrakli, D.E. Yildiz, M. Parlak, J. Mater. Sci. 28, 17806 (2017)

    CAS  Google Scholar 

  43. R.T. Tung, J.P. Sullivan, F. Schrey, Mat. Sci. Eng. B 14, 266 (1992)

    Google Scholar 

  44. W. Mönch, Electronic Properties of Semiconductor Interfaces (Springer, Berlin, 2004)

    Google Scholar 

  45. S. Chand, J. Kumar, Appl. Phys. A 65, 497 (1997)

    CAS  Google Scholar 

  46. J.H. Werner, H.H. Güttler, Phys. Scr. T39, 258 (1991)

    CAS  Google Scholar 

  47. A. Bengi, S.J. Jang, C.I. Yeo, T. Mammadov, S. Ozcelik, Y.T. Lee, Solid State Electron. 61, 29 (2011)

    CAS  Google Scholar 

  48. I.S. Yahia, M. Fadel, G.B. Sakr, F. Yakuphanoglu, S.S. Shenouda, W.A. Farooq, J. Alloys Compd. 509, 4414 (2011)

    CAS  Google Scholar 

  49. C.R. Crowell, Solid State Electron. 8, 395 (1965)

    Google Scholar 

  50. P. Chattopadhyay, J. Phys. D 29, 823 (1996)

    CAS  Google Scholar 

  51. E. Coskun, H.H. Gullu, I. Candan, O. Bayrakli, M. Parlak, C. Ercelebi, Mater. Sci. Semicond. Process. 34, 138 (2015)

    CAS  Google Scholar 

  52. J.R. Yeargan, H.L. Taylor, J. Appl. Phys. 39, 5600 (1968)

    CAS  Google Scholar 

  53. M. Soylu, O.A. Al-Hartomy, S.A.F. Al Said, A.A. Al-Ghamdi, I.S. Yahia, F. Yakuphanoglu, Microelectron. Reliab. 53, 1901 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Yildiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gullu, H.H., Yildiz, D.E. Analysis of forward and reverse biased current–voltage characteristics of Al/Al2O3/n-Si Schottky diode with atomic layer deposited Al2O3 thin film interlayer. J Mater Sci: Mater Electron 30, 19383–19393 (2019). https://doi.org/10.1007/s10854-019-02300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02300-1

Navigation