Skip to main content
Log in

Analysis of temperature-dependent forward and leakage conduction mechanisms in organic thin film heterojunction diode with fluorine-based PCBM blend

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The forward and reversed biased current–voltage behaviors of the organic diode were detailed in a wide range of temperatures. In this diode, a donor–acceptor-conjugated copolymer system was constructed with poly((9,9-dioctylfluorene)-2,7-diyl-(2-dodecyl-benzo[1,2,3]triazole)) as a partner of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Two-order of magnitude rectification ratio was achieved, and the temperature-dependent values of saturation current, zero-bias barrier height, and ideality factor were extracted according to the thermionic emission model. The temperature responses of these diode parameters showed an existence of inhomogeneity in the barrier height formation. As a result, the observed non-ideal behavior was explained by Gaussian distribution of barrier height where low-barrier regions are effective in the forward biased conduction mechanism at low temperatures. Together with this analysis, series resistances were evaluated using Cheung’s functions and also density of interface states were investigated. On the other hand, reverse biased current flow was found under the dominant effect of Poole–Frenkel effects associated with these interfacial traps. The reverse current conduction mechanism was detailed by calculating characteristic field-lowering coefficients and barrier height values in the emission process from the trapped state in the range of temperatures of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T.D. Lee, A.U. Ebong, Renew. Sustain. Energy Rev. 70, 1286–1297 (2017)

    CAS  Google Scholar 

  2. K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovolt. Res. Appl. 12, 69–92 (2004)

    CAS  Google Scholar 

  3. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 27, 3–12 (2019)

    Google Scholar 

  4. M.K.S.B. Rafiq, N. Amin, H.F. Alharbi, M. Luqman, A. Ayob, Y.S. Alharhi, N.H. Alharthi, B. Bias, M. Akhtaruzzaman, Sci. Rep. 10, 771 (2020)

    Google Scholar 

  5. M.Q. Baig, H.A. Khan, S.M.J. Ahsan, Renew. Sustain. Energy Rev. 12, 012701 (2020)

    Google Scholar 

  6. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys. 4, 1548305 (2019)

    CAS  Google Scholar 

  7. Y.H. Khattak, F. Baig, H. Toura, I. Harabi, S. Beg, B.M. Soucase, Appl. Surf. Sci. 497, 143794 (2019)

    Google Scholar 

  8. J. Andrade-Arvizu, V. Izquierdo-Roca, I. Becerril-Romero, P. Vidal-Fuentes, R. Fonoll-Rubio, Y. Sanchez, M. Placidi, L. Calvo-Barrio, O. Vigil-Galan, E. Saucedo, ACS Appl. Mater. Interfaces 11, 32945–32956 (2019)

    CAS  Google Scholar 

  9. A.S. Hassanien, I.J. Sharma, J. Alloys Compd. 798, 750–763 (2019)

    CAS  Google Scholar 

  10. K. Ye, S.C. Siah, P.T. Erslev, A. Akey, C. Settens, M.S.B. Hoque, J. Braun, P. Hopkins, G. Teeter, T. Buonassisi, R. Jaramillo, Chem. Mater. 31, 8402–8412 (2019)

    CAS  Google Scholar 

  11. A. Nawaz, L. Merces, D.M. de Andrade, D.H.S. de Camargo, C.C.B. Bufon, Nat. Commun. 11, 841 (2020)

    CAS  Google Scholar 

  12. L.A. Galindo, G. Gozzi, L. Fugikawa-Santos, R.M. Faria, F.C. Lavarda, A. Batagin-Neto, Org. Electron. 79, 105629 (2020)

    CAS  Google Scholar 

  13. C. Sekine, Y. Tsubata, T. Yamada, M. Kitano, S. Doi, Sci. Technol. Adv. Mater. 15, 034203 (2014)

    Google Scholar 

  14. S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324–1338 (2007)

    Google Scholar 

  15. M. Ikram, M. Imran, J.M. Nunzi, S.R. Bobbara, S. Ali, I. Islah-U-din, J. Renew. Sustain. Energy 7, 043148 (2015)

    Google Scholar 

  16. N. Awol, C. Amente, G. Verma, J.Y. Kim, J. Alloys Compd. 829, 154486 (2020)

    CAS  Google Scholar 

  17. H.Y. Lee, P.S. Su, C.T. Lee, Org. Electron. 82, 105722 (2020)

    CAS  Google Scholar 

  18. Z. Yu, Y. Xia, D. Du, J. Ouyang, A.C.S. Appl, Mater. Interfaces 8, 11629–11638 (2016)

    CAS  Google Scholar 

  19. A. Al Mamun, T.T. Ava, K. Zhang, H. Baumgart, G. Namkoong, Phys. Chem. Chem. Phys. 19, 17960–17966 (2017)

    Google Scholar 

  20. F. Yakuphanoglu, R.S. Anand, Synth. Met. 160, 2250–2254 (2010)

    CAS  Google Scholar 

  21. E. Kaya, D.H. Apaydın, D.E. Yildiz, L. Toppare, A. Cirpan, Sol. Energy Mater. Sol. Cell. 99, 321–326 (2012)

    CAS  Google Scholar 

  22. S. Pandey, M. Karakoti, N. Chaudhary, S. Gupta, A. Kumar, S. Dhali, A. Patra, R.K. Singh, N.G. Sahoo, J. Nanosci. Nanotechnol. 20, 3888–3895 (2020)

    CAS  Google Scholar 

  23. H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yildirim, J. Alloys Compd. 827, 154279 (2020)

    CAS  Google Scholar 

  24. E. Kaya, A. Balan, D. Baran, A. Cirpan, L. Toppare, Org. Electron. 12, 202–209 (2011)

    CAS  Google Scholar 

  25. U. Salzner, J. Phys. Chem. B 106, 9214–9220 (2002)

    CAS  Google Scholar 

  26. M.T. Dang, G. Wantz, H. Bejbouji, M. Urien, O.J. Dautel, L. Vignau, L. Hirsch, Sol. Energy Mater. Sol. Cell 95, 3408–3418 (2011)

    CAS  Google Scholar 

  27. P.R. Berger, M.J. Kim, Renew. Sustain. Energy 10, 013508 (2018)

    Google Scholar 

  28. R. Geethu, M.V. Santosh, C.S. Kartha, K.P. Vijayakumar, J. Mater. Sci. 30, 18981–19989 (2019)

    CAS  Google Scholar 

  29. O.T. Ozmen, Microelectron. Reliab. 4, 2766–2774 (2014)

    Google Scholar 

  30. D. Grozea, A. Turak, X.D. Feng, Z.H. Lu, D. Johnson, R. Wood, Appl. Phys. Lett. 81, 3173–3175 (2002)

    CAS  Google Scholar 

  31. H.N. Ye, Z.Q. Wang, F.T. Yu, S.C. Zhang, K.Y. Kong, X.Q. Gong, J.L. Hua, H. Tian, Appl. Catal. B 267, 118577 (2020)

    CAS  Google Scholar 

  32. S. Chen, L.Q. Kong, C.L. Ban, J.S. Zhao, H.M. Du, Int. J. Electrochem. Sci. 13, 9964–9980 (2018)

    CAS  Google Scholar 

  33. D.E. Yildiz, D.H. Apaydin, E. Kaya, S. Altindal, A. Cirpan, J. Macromol. Sci. A 50, 168–174 (2013)

    CAS  Google Scholar 

  34. D.H. Apaydin, D.E. Yildiz, A. Cirpan, L. Toppare, Sol. Energy Mater. Sol. Cell 113, 100–105 (2013)

    CAS  Google Scholar 

  35. S.D. Nehate, A. Prakash, P.D. Mani, K.B. Sundaram, ECS J. Solid State Sci. Technol. 7, P87–P90 (2018)

    CAS  Google Scholar 

  36. M.R. Lenze, N.M. Kronenberg, F. Wurthner, K. Meerholz, Org. Electron. 21, 171–176 (2015)

    CAS  Google Scholar 

  37. D.E. Yildiz, D.H. Apaydin, L. Toppare, A. Cirpan, J. Appl. Polym. Sci. 134, 44817 (2017)

    Google Scholar 

  38. R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Polym. Rev. 48, 531–582 (2008)

    CAS  Google Scholar 

  39. T. Soga, Nanostructored Materials for Solar Energy Conversion (Elsevier, The Netherlands, 2006)

    Google Scholar 

  40. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices (Wiley, New Jersey, 2007)

    Google Scholar 

  41. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589–1598 (1971)

    CAS  Google Scholar 

  42. M. Ozer, D.E. Yildiz, S. Altindal, M.M. Bulbul, Solid State Electron. 51, 941–949 (2007)

    Google Scholar 

  43. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Google Scholar 

  44. H. Li, Q. Zhou, P. Mao, J. Cao, L. Ding, J. Wang, Sci. Rep. 7, 40134 (2017)

    CAS  Google Scholar 

  45. J.C. Nolasco, G. Ramos-Ortiz, J.L. Maldonado, O. Barbosa-Garcia, B. Ecker, E. von Hauff, Appl. Phys. Lett. 104, 043308 (2014)

    Google Scholar 

  46. D.E. Yildiz, M. Karakus, L. Toppare, A. Cirpan, Mater. Sci. Semicond. 28, 84–88 (2014)

    CAS  Google Scholar 

  47. D.E. Yildiz, J. Mater. Sci. 29, 17802–17808 (2018)

    CAS  Google Scholar 

  48. Y.J. Lin, Y.M. Chin, H.C. Chang, ECS J. Solid State Technol. 6, M5 (2016)

    Google Scholar 

  49. A. Afal, S. Coskun, H.E. Unalan, Appl. Phys. Lett. 102, 043503 (2013)

    Google Scholar 

  50. A. Ojo, W. Cranton, I. Dharmadasa, Next Generation Multilayer Graded Bandgap Solar Cells (Springer, Switzerland, 2018)

    Google Scholar 

  51. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    CAS  Google Scholar 

  52. H.H. Gullu, D.E. Yildiz, J. Mater. Sci. 30, 19383–19393 (2019)

    CAS  Google Scholar 

  53. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    CAS  Google Scholar 

  54. D.E. Yildiz, S. Altindal, H. Kanbur, J. Appl. Phys. 103, 124502 (2008)

    Google Scholar 

  55. A. Tataroglu, F.Z. Pur, Phys. Scr. 88, 015801 (2013)

    Google Scholar 

  56. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    CAS  Google Scholar 

  57. W. Mönch, Electronic Properties of Semiconductor Interfaces (Springer, Berlin, 2004)

    Google Scholar 

  58. E.H. Nicollian, A. Goetzberger, Bell Syst. Technol. J. 46, 1055 (1967)

    CAS  Google Scholar 

  59. H.H. Gullu, O. Bayrakli, D.E. Yildiz, M. Parlak, J. Mater. Sci. 28, 17806–17815 (2017)

    CAS  Google Scholar 

  60. S. Altindal, H. Kanbur, D.E. Yildiz, M. Parlak, Appl. Surf. Sci. 253, 5056–5061 (2007)

    CAS  Google Scholar 

  61. M. Soylu, O.A. Al-Hartomy, S.A.F. Al-Said, A.A. Al-Ghamdi, I.S. Yahia, F. Yakuphanoglu, Microelectron. Reliab. 53, 1901–1906 (2013)

    CAS  Google Scholar 

  62. A.A.M. Farag, I.S. Yahia, T. Wojtowicz, G.J. Karczewski, J. Phys. D 43, 215102 (2010)

    Google Scholar 

  63. V. Janardhanam, H.J. Yun, I. Jyothi, J. Lee, H. Hong, V.R. Reddy, C.J.J. Choi, J. Alloys Compd. 637, 84–89 (2005)

    Google Scholar 

  64. J.G. Simmons, Phys. Rev. 155, 657–660 (1967)

    CAS  Google Scholar 

  65. H.J. Schroeder, Appl. Phys. 117, 215103 (2015)

    Google Scholar 

  66. M. Soylu, I.S. Yahia, F. Yakuphanoglu, W.A.J. Farooq, J. Appl. Phys. 110, 074514 (2011)

    Google Scholar 

  67. E. Arslan, S. Butun, E. Ozbay, Appl. Phys. Lett. 94, 142106 (2009)

    Google Scholar 

  68. P.K. Rao, B. Park, S.T. Lee, Y.K. Noh, M.D. Kim, J.E. Oh, J. Appl. Phys. 110, 013716 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Yıldız.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, D.E., Gullu, H.H., Toppare, L. et al. Analysis of temperature-dependent forward and leakage conduction mechanisms in organic thin film heterojunction diode with fluorine-based PCBM blend. J Mater Sci: Mater Electron 31, 15233–15242 (2020). https://doi.org/10.1007/s10854-020-04088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04088-x

Navigation