Skip to main content

Advertisement

Log in

Influence of anionic precursors on electrochemical properties of tin oxide nanoparticles: a comparative analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A cost-effective chemical precipitation method has been adopted to synthesis tin oxide (SnO2) nanomaterials with the help of two different anionic sources (NH3OH and NaOH). Initially, the X-ray diffraction (XRD) studies confirm the formation of regular rutile tetragonal crystal structure of SnO2. The functional group analysis by Fourier transform infra-red (FTIR) spectroscopy identifies the presence of Sn-OH stretching mode of vibration. The morphological with elemental confirmation by HRSEM with EDAX analysis observes the formation of SnO2 agglomeration in appropriate ratio (Sn and O) without showing any other impurities. The particle size analysis (PSA) reveals that the synthesized SnO2 nanomaterials are in a nano-sized range of 10 nm to 33 nm. The optical analysis using UV–Visible (UV) and photoluminescence (PL) spectroscopy reveals that the bandgap energy of synthesized materials is found to be 4.12 eV and 4.14 eV, blue-shifted from bulk materials. The electrochemical behavior of synthesized tin oxide nanomaterials as working electrodes are examined by a conventional three-electrode system with analyzed parameters such as cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). This study exposes the highest specific capacitance Csp value of 405.15 F g−1 at a scan rate of 1 mV s−1 and 403.72 F g−1 at a current density of 0.5 Ag−1. The highest energy density and power density value of 27.48 Wh kg−1 at 0.5 Ag−1 and 145.83 W kg−1 at 1 Ag−1, respectively, presents a promising positive working electrode material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.B. Stambouli, E. Traversa, Renew. Sustain. Energ. Rev. (2002). https://doi.org/10.1016/S1364-0321(02)00014-X

    Article  Google Scholar 

  2. R.N. Muthu, S.S.V. Tatiparti, Storage (2020). 2, 134

    Google Scholar 

  3. R.S. Kate, S.A. Khalate, R.J. Deokate, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  Google Scholar 

  4. P. Simon, Y. Gogotsi, J. Nanosci. Nanotechnol. (2010). https://doi.org/10.1142/9789814287005_0033

    Article  Google Scholar 

  5. S. Korkmaz, I. Kariper, J. Energy Storage (2020). https://doi.org/10.1016/j.est.2019.101038

    Article  Google Scholar 

  6. H. Wang, X. Liu, B. Zhang, J. Yang, Z. Zhang, R. Yue, Z. Wang, J. Alloys Compd (2019). https://doi.org/10.1016/j.jallcom.2019.01.303

    Article  Google Scholar 

  7. F. Cheng, X. Yang, S. Zhang, Lu. Wen, J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2019.227678

    Article  Google Scholar 

  8. T. Wang, X. He, W. Gong, K. Sun, Lu. Wenyang, Yi. Yao, Z. Chen, T. Sun, M. Fan, Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117985

    Article  Google Scholar 

  9. R. Thangappan, M. Arivanandhan, R.D. Kumar, R. Jayavel, J. Phys. Chem. Solids. (2018). https://doi.org/10.1016/j.jpcs.2018.05.049

    Article  Google Scholar 

  10. B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, A. Sakunthala, R. Yuvakkumar, J. Nanosci. Nanotechnol (2019). https://doi.org/10.1166/jnn.2019.16098

    Article  Google Scholar 

  11. U.K. Chime, A.C. Nkele, S. Ezugwu, A.C. Nwanya, N.M. Shinde, M. Kebede, P.M. Ejikeme, M. Maaza, F.I. Ezema, Curr. Opin. Electrochem. (2020). https://doi.org/10.1016/j.coelec.2020.02.004

    Article  Google Scholar 

  12. H. Zhang, Yu. Jun Wei, Q.G. Yan, L. Xie et al., J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2019.227616

    Article  Google Scholar 

  13. R. Packiaraj, P. Devendran, K.S. Venkatesh, A. Manikandan, N. Nallamuthu, J. Supercond. Novel Magn (2019). https://doi.org/10.1007/s10948-018-4963-6

    Article  Google Scholar 

  14. H. Zhang, X. Han, R. Gan, Z. Guo, Y. Ni, Li. Zhang, Appl. Surf. Sci (2020). https://doi.org/10.1016/j.apsusc.2020.145527

    Article  Google Scholar 

  15. S.M. Youssry, I.S. El-Hallag, R. Kumar, G. Kawamura, A. Matsuda, M.N. El-Nahass, J. Electroanal (2020). https://doi.org/10.1016/j.jelechem.2019.113728

    Article  Google Scholar 

  16. T.F. Zhang, W.-J. Lee, S.-H. Kwon, Z. Wan, Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.126656

    Article  Google Scholar 

  17. B. Li, R. Xing, S.V. Mohite, S.S. Latthe, A. Fujishima, S. Liu, Y. Zhou, J. Power Sources (2019). https://doi.org/10.1016/j.jpowsour.2019.226862

    Article  Google Scholar 

  18. K. Jeyabanu, P. Devendran, A. Manikandan, R. Packiaraj, K. Ramesh, N. Nallamuthu, Physica B Condens. Matter (2019). https://doi.org/10.1016/j.physb.2019.08.028

    Article  Google Scholar 

  19. S.P. Ashokkumar, H. Vijeth, L. Yesappa, M. Niranjana, M. Vandana, H. Devendrappa, Inorg. Chem. Commun. (2020). https://doi.org/10.1016/j.inoche.2020.107865

    Article  Google Scholar 

  20. Y. Sun, D. Jia, A. Zhang, J. Tian, Y. Zheng, W. Zhao, L. Cui, J. Liu, J Colliod Interf Sci (2019). https://doi.org/10.1016/j.jcis.2019.09.065

    Article  Google Scholar 

  21. T. Qi, Q. Wang, Y. Zhang, Di. Wang, R. Yang, W. Zheng, Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.09.098

    Article  Google Scholar 

  22. S. Asaithambi, P. Sakthivel, M. Karuppaiah, Y. Hayakawa, A. Loganathan, G. Ravi, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-3441-8

    Article  Google Scholar 

  23. H. Li, B. Zhang, Q. Zhou, J. Zhang, Yu. Wanjing, Z. Ding, M.A. Tsiamtsouri, J. Zheng, H. Tong, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.090

    Article  Google Scholar 

  24. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, P. Dhamodharan, M. Anandan, Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.104982

    Article  Google Scholar 

  25. S. Asaithambi, P. Sakthivel, M. Karuppaiah, G.U. Sankar, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, J. Energy Storage. (2020). https://doi.org/10.1016/j.est.2020.101530

    Article  Google Scholar 

  26. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Int. Nano Lett. (2012). https://doi.org/10.1186/2228-5326-2-17

    Article  Google Scholar 

  27. R. Vasanthapriya, N. Neelakandeswari, N. Rajasekaran, K. Uthayarani, M. Chitra, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.02.118

    Article  Google Scholar 

  28. B. Saravanakumar, G. Ravi, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, J. Sol-Gel Sci. Technol. (2018). https://doi.org/10.1007/s10971-018-4685-z

    Article  Google Scholar 

  29. P. Rajeshwaran, A. Sivarajan, J. Mater. Sci.: Mater. Electron. (2015). https://doi.org/10.1007/s10854-014-2432-y

    Article  Google Scholar 

  30. N.S. Sabri, M.S.M. Deni, A. Zakaria, M.K. Talari, Phys. Proc. (2012). https://doi.org/10.1016/j.phpro.2012.03.077

    Article  Google Scholar 

  31. J. Jiang, L. Ostheim, M. Kleine-Boymann, D.M. Hofmann, P.J. Klar, M. Eickhoff, J. Appl. Phys. (2017). https://doi.org/10.1063/1.5000115

    Article  Google Scholar 

  32. J. Henry, K. Mohanraj, G. Sivakumar, S. Umamaheswari, Spectrochim. Acta A Mol. Biomol. Spectrosc. (2015). https://doi.org/10.1016/j.saa.2015.02.034

    Article  Google Scholar 

  33. L. Soussi, T. Garmim, O. Karzazi, A. Rmili, A. El Bachiri, A. Louardi, H. Erguig, Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100467

    Article  Google Scholar 

  34. J. Geng, C. Ma, D. Zhang, X. Ning, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153850

    Article  Google Scholar 

  35. A. Murugan, V. Siva, A. Shameem, S. Asath Bahadur, S. Sasikumar, N. Nallamuthu, J. Energy Storage. (2020). https://doi.org/10.1016/j.est.2020.101194

    Article  Google Scholar 

  36. D.V. Shinde, D.Y. Lee, S.A. Patil, I. Lim, S.S. Bhande, W. Lee, M.M. Sung, R.S. Mane, N.K. Shrestha, S.-H. Han, RSC Adv. (2013). https://doi.org/10.1039/C3RA22721A

    Article  Google Scholar 

  37. R.J. Gilliam, J.W. Graydon, D.W. Kirk, S.J. Thorpe, Int J Hydrogen Energy (2007). https://doi.org/10.1016/j.ijhydene.2006.10.062

    Article  Google Scholar 

  38. P. Scherrer, Nachr (Ges. Wiss, Göttingen, 1918).

    Google Scholar 

  39. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  40. K.C. Song, Y. Kang, Mater. Lett. (2000). https://doi.org/10.1016/S0167-577X(99)00199-8

    Article  Google Scholar 

  41. L. Xi, D. Qian, X. Tang, C. Chen, Mater. Chem. Phys (2008). https://doi.org/10.1016/j.matchemphys.2007.09.023

    Article  Google Scholar 

  42. S. Asaithambi, P. Sakthivel, M. Karuppaiah, R. Murugan, R. Yuvakkumar, G. Ravi, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07061-5

    Article  Google Scholar 

  43. G. Suresh, R. Sathishkumar, B. Iruson, B. Sathyaseelan, K. Senthilnathan, E. Manikandan, Int. J. Nano Dimension 10, 242 (2019)

    Google Scholar 

  44. N. Ghobadi, Int. Nano Lett. (2013). https://doi.org/10.1186/2228-5326-3-2

    Article  Google Scholar 

  45. V. Bonu, B. Gupta, S. Chandra, A. Das, S. Dhara, A.K. Tyagi, Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.03.153

    Article  Google Scholar 

  46. S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, Appl. Surf. Sci. (2011). https://doi.org/10.1016/j.apsusc.2011.06.043

    Article  Google Scholar 

  47. B. Bashir, W. Shaheen, M. Asghar, M.F. Warsi, M.A. Khan, S. Haider, I. Shakir, M. Shahid, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.10.183

    Article  Google Scholar 

  48. B. Rani, B. Jansi, G.R. Saravanakumar, R. Yuvakkumar, AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5032446

    Article  Google Scholar 

Download references

Acknowledgement

The authors greatly acknowledge DST-FIST and the management of Dr. N. G. P. Arts and Science College, Coimbatore for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kanmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthambabu, V., Kanmani, S.S. & Rajamanickam, N. Influence of anionic precursors on electrochemical properties of tin oxide nanoparticles: a comparative analysis. J Mater Sci: Mater Electron 32, 11695–11708 (2021). https://doi.org/10.1007/s10854-021-05788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05788-8

Navigation