Skip to main content

Advertisement

Log in

Perovskite‐type Li‐ion solid electrolytes: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

All-solid-state lithium batteries with inorganic solid electrolytes are recognized as the next-generation battery systems due to their high safety and energy density. To realize the practical applications of all-solid-state lithium battery, it is essential to develop solid electrolytes which exhibit high Li-ion conductivity, low electron conductivity, wide electrochemical window, and low interface resistance between the electrode and the solid electrolyte. Among many solid electrolytes, the perovskite-type lithium-ion solid electrolytes are promising candidates that can be applied to all-solid-state lithium batteries. However, the perovskite-type solid electrolytes still suffer from several significant problems, such as poor stability against lithium metal, high interface resistance, etc. In this review, we have analyzed and summarized the properties of perovskite-type solid electrolytes with two different systems, namely three-component oxide system Li3xLa2/3−xTiO3 (LLTO) and four-component oxide system (Li, Sr)(B, B’)O3 (B = Zr, Hf, Ti, Sn, Ga, etc., B’ = Nb, Ta, etc.). LLTO and (Li, Sr)(B, Ta)O3 compounds exhibit high Li-ion conductivity of up to > 10− 4 S·cm− 1 at room temperature. Based on the review of academic literature, the ion transportation mechanism, composition design, electrical properties, stability, doping, and application of these solid electrolytes are discussed, which would be helpful for the further development of all-solid-state lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.Q. Lin, Z.J. Jia, Energy 159, 558–568 (2018)

    Article  Google Scholar 

  2. C.W. Sun, X.L. Ouyang, Energ. Policy 88, 56–63 (2016)

    Article  Google Scholar 

  3. R. Waheed, S. Sarwar, C. Wei, Energy. Rep. 5, 1103–1115 (2019)

    Article  Google Scholar 

  4. Z.H. Danish, Wang, Sustain. Cities. Soc. 49, 101626 (2019)

    Article  Google Scholar 

  5. S. Goriparti, E. Miele, F. De. Angelis et al., J Power. Sources 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  6. J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  CAS  Google Scholar 

  7. R. Marom, S.F. Amalraj, N. Leifer et al., J. Mater. Chem. 21, 9938–9954 (2011)

    Article  CAS  Google Scholar 

  8. J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  9. S. Pacala, R. Socolow, Science 305, 968–972 (2004)

    Article  CAS  Google Scholar 

  10. J.B. Goodenough, Y. Kim, Chem. Mater 22, 587–603 (2010)

    Article  CAS  Google Scholar 

  11. Y.S. Jung, D.Y. Oh, Y.J. Nam et al., Isr. J. Chem. 55, 472–485 (2015)

    Article  CAS  Google Scholar 

  12. A. Rossbach, F. Tietz, S. Grieshammer, J. Power. Sources 391, 1–9 (2018)

    Article  CAS  Google Scholar 

  13. Y.D. Sun, P.Y. Guan, Y.J. Liu et al., Crit. Rev. Solid. State. 44, 265–282 (2019)

    Article  CAS  Google Scholar 

  14. S. Ramakumar, C. Deviannapoorani, L. Dhivya et al., Prog. Mater Sci. 88, 325–411 (2017)

    Article  CAS  Google Scholar 

  15. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43, 4714–4727 (2014)

    Article  CAS  Google Scholar 

  16. A.M. Stephan, K.S. Nahm, Polymer 47, 5952–5964 (2006)

    Article  CAS  Google Scholar 

  17. B.V.R. Chowdaria, G.V. Subba Rao, G.Y.H. Lee, Solid State Ionics 136, 1067–1075 (2000)

    Article  Google Scholar 

  18. Y. Zhu, Y. Zhang, L. Lu, J. Power. Sources 290, 123–129 (2015)

    Article  CAS  Google Scholar 

  19. Q. Liu, Z. Geng, C. Han et al., J. Power. Sources 389, 120–134 (2018)

    Article  CAS  Google Scholar 

  20. H. Liu, X.B. Cheng, J.Q. Huang et al., ACS. Energy. Lett. 5, 833–843 (2020)

    Article  CAS  Google Scholar 

  21. N. Kamaya, K. Homma, Y. Yamakawa et al., Nat. Mater. 10, 682–686 (2011)

    Article  CAS  Google Scholar 

  22. J.Y. Lu, Y. Li, Y.S. Ding, JOM 72, 3256–3261 (2020)

    Article  CAS  Google Scholar 

  23. K. Mitsuishi, T. Ohnishi, Y. Tanaka et al., Appl. Phys. Lett. 101, 073903 (2012)

    Article  CAS  Google Scholar 

  24. Y. Inaguma, J.D. Yu, Y.J. Shan et al., J. Electrochem. Soc. 142, L8–L11 (1995)

    Article  CAS  Google Scholar 

  25. S. Stramare, V. Thangadurai, W. Weppner, Chem. Mater. 15, 3974–3990 (2003)

    Article  CAS  Google Scholar 

  26. J. Emery, J.Y. Buzare, O. Bohnke et al., Solid State Ionics 99, 41–51 (1997)

    Article  CAS  Google Scholar 

  27. O. Bohnke, J. Emery, J.L. Fourquet, Solid State Ionics 158, 119–132 (2003)

    Article  CAS  Google Scholar 

  28. A. Boulant, J. Emery, A. Jouanneaux et al., J. Phys. Chem. C 115, 15575–15585 (2011)

    Article  CAS  Google Scholar 

  29. V.M. Goldschmidt, Naturwissenschaften 14, 477–485 (1926)

    Article  CAS  Google Scholar 

  30. C.H. Chen, S. Xie, E. Sperling et al., Solid State Ionics 167, 263–272 (2004)

    Article  CAS  Google Scholar 

  31. J.Y. Lu, Y. Li, Electrochim. Acta 282, 409–415 (2018)

    Article  CAS  Google Scholar 

  32. Y.Z. Kong, Y. Li, J.Y. Lu et al., Mater. Res. Express 4, 095504 (2011)

    Article  CAS  Google Scholar 

  33. J.Y. Lu, Y. Li, Y.Z. Kong et al., Ceram. Int. 44, 4744–4750 (2018)

    Article  CAS  Google Scholar 

  34. Y.Z. Kong, Y. Li, J.Y. Lu, Ceram. Int. 43, 5642–5646 (2017)

    Article  CAS  Google Scholar 

  35. K. Kimura, K. Wagatsuma, T. Tojo, Ceram. Int. 42, 5546–5552 (2016)

    Article  CAS  Google Scholar 

  36. B. Huang, B.Y. Xu, Y.T. Li et al., ACS. Appl. Mater. Inter. 8, 14552–14557 (2016)

    Article  CAS  Google Scholar 

  37. A. Sharafi, S. Yu, M. Naguibl et al., J. Mater. Chem. A 5, 13475–13487 (2017)

    Article  CAS  Google Scholar 

  38. L.C. Zhang, J.F. Yang, Y.X. Gao, et. al, J. Power. Sources 355, 69–73 (2017)

    Article  CAS  Google Scholar 

  39. K. Hofstetter, A.J. Samson, S. Narayanan et al., J. Power. Sources 390, 297–312 (2018)

    Article  CAS  Google Scholar 

  40. A. Boulant, P. Maury, J. Emery et al., Chem. Mater. 21, 2209–2217 (2009)

    Article  CAS  Google Scholar 

  41. N.S.P. Bhuvanesh, O. Bohnke, H. Duroy et al., Mater Res. Bull. 33, 1681–1691 (1998)

    Article  CAS  Google Scholar 

  42. T. Durán, E. Climent-Pascual, M.T. Pérez-Prior et al., Adv. Power. Technol. 28, 514–520 (2017)

    Article  CAS  Google Scholar 

  43. A. Boulant, J.F. Bardeau, A. Jouanneaux et al., Dalton. T. 39, 3968–3975 (2010)

    Article  CAS  Google Scholar 

  44. O. Bohnke, Q.N. Pham, A. Boulant et al., Solid State Ionics 188, 144–147 (2011)

    Article  CAS  Google Scholar 

  45. J.Y. Lu, Y. Li, Y.S. Ding, Mater Res. Bull. 133, 111019 (2021)

    Article  CAS  Google Scholar 

  46. J.Y. Lu, Y. Li, Y.S. Ding, Ceram. Int. 46, 7741–7747 (2020)

    Article  CAS  Google Scholar 

  47. Y. Harada, T. Ishigaki, H. Kawai et al., Solid State Ionics 108, 407–413 (1998)

    Article  CAS  Google Scholar 

  48. H.X. Geng, J.L. Lan, A. Mei et al., Electrochim. Acta 56, 3406–3414 (2011)

    Article  CAS  Google Scholar 

  49. E.J. van den Ham, N. Peys, C. De Dobbelaere et al., J. Sol-Gel. Sci. Technol. 73, 536–543 (2015)

    Article  CAS  Google Scholar 

  50. A.G. Belous, J. Eur. Ceram. Soc. 21, 1797–1800 (2001)

    Article  CAS  Google Scholar 

  51. K. Yu, Y. Tian, R. Gu et al., J. Eur. Ceram. Soc. 38, 4483–4487 (2018)

    Article  CAS  Google Scholar 

  52. O. Bohnke, Solid State Ionics 179, 9–15 (2008)

    Article  CAS  Google Scholar 

  53. X. Guo, P.S. Maram, A. Navrotsky, J. Mater. Chem. A 5, 12951–12957 (2017)

    Article  CAS  Google Scholar 

  54. C.H. Chen, K. Amine, Solid State Ionics 144, 51–57 (2001)

    Article  CAS  Google Scholar 

  55. J.F. Wu, X. Guo, Solid State Ionics 310, 38–43 (2017)

    Article  CAS  Google Scholar 

  56. S. Sasano, R. Ishikawa, I. Sugiyama et al., Appl. Phys. Express 10, 061102 (2017)

    Article  Google Scholar 

  57. K.Y. Yang, I.C. Leu, K.Z. Fung et al., J. Mater. Res. 23, 1813–1825 (2008)

    Article  CAS  Google Scholar 

  58. Y.L. Xiong, H.Z. Tao, J. Zhao et al., J. Alloy. Compd. 509, 1910–1914 (2011)

    Article  CAS  Google Scholar 

  59. Z.F. Zheng, H.Z. Fang, Z.K. Liu et al., J. Electrochem. Soc. 162, A244–A248 (2015)

    Article  CAS  Google Scholar 

  60. C.S. Wang, P. Patil, A.J. Appleby et al., J. Electrochem. Soc. 151, A1196–A1201 (2004)

    Article  CAS  Google Scholar 

  61. B. Antoniassi, A.H.M. Gonzalez, S.L. Fernandes et al., Mater. Chem. Phys. 127, 51–55 (2011)

    Article  CAS  Google Scholar 

  62. B.S. Youmbi, S. Zekeng, S. Domngang et al., Ionics. 18, 371–377 (2012)

    Article  CAS  Google Scholar 

  63. K.P. Abhilash, P.C. Selvin, B. Nalini et al., J. Phys. Chem. Solids 91, 114–121 (2016)

    Article  CAS  Google Scholar 

  64. M. Kotobuki, H. Munakata, K. Kanamura, J. Power. Sources 196, 6947–6950 (2011)

    Article  CAS  Google Scholar 

  65. H.X. Geng, A. Mei, Y.H. Lin et al., Mater. Sci. Eng. B 164, 91–95 (2009)

    Article  CAS  Google Scholar 

  66. X.T. Hu, G. Yan, X. Cheng et al., J. Am. Ceram. Soc. 102, 1953–1960 (2019)

    CAS  Google Scholar 

  67. X.T. Hu, X. Cheng, S.M. Qin et al., Ceram. Int. 44, 1902–1908 (2018)

    Article  CAS  Google Scholar 

  68. E.A. Fortalnova, A.V. Mosunov, M.G. Safronenko et al., Mater. Sci. Forum. 514–516, 407–411 (2006)

    Article  Google Scholar 

  69. V. Thangadurai, W. Weppner, Ionics. 6, 70–77 (2000)

    Article  CAS  Google Scholar 

  70. R.H. Li, R.T. Chen, W.J. Wang, Ionics. 8, 412–415 (2002)

    Article  CAS  Google Scholar 

  71. S. Ulusoy, S. Gulen, G. Aygun et al., Solid State Ionics 324, 226–232 (2018)

    Article  CAS  Google Scholar 

  72. Z.X. Hu, J.L. Sheng, J.H. Chen et al., New J. Chem. 42, 9074–9079 (2018)

    Article  CAS  Google Scholar 

  73. H.T.T. Le, R.S. Kalubarme, D.T. Ngo et al., J. Mater. Chem. A 3, 22421–22431 (2015)

    Article  CAS  Google Scholar 

  74. K. Yu, L. Jin, Y. Li et al., Ceram. Int. 45, 23941–23947 (2019)

    Article  CAS  Google Scholar 

  75. S.J. Lee, J.J. Bae, J.T. Son, J. Korean. Phys. Soc. 74, 73–77 (2019)

    Article  CAS  Google Scholar 

  76. T. Teranishi, M. Yamamoto, H. Hayashi et al., Solid State Ionics 243, 18–21 (2013)

    Article  CAS  Google Scholar 

  77. D.L. Lu, J.M. Ma, J.L. Wu et al., Ceram. Int. 45, 2584–2590 (2019)

    Article  CAS  Google Scholar 

  78. M.E. Sotomayor, A. Várez, W. Bucheli et al., Ceram. Int. 39, 9619–9626 (2013)

    Article  CAS  Google Scholar 

  79. T. Teranishi, A. Kouchi, H. Hayashi et al., Solid State Ionics 263, 33–38 (2014)

    Article  CAS  Google Scholar 

  80. H.X. Geng, A. Mei, Y.H. Lin et al., Rare. Metal. Mat. Eng. 46, 0007–0011 (2017)

    Article  CAS  Google Scholar 

  81. A. Mei, X.L. Wang, J.L. Lan et al., Electrochim. Acta 55, 2958–2963 (2010)

    Article  CAS  Google Scholar 

  82. H. Zhang, S.M. Hao, J.P. Lin et al., J. Alloy. Compd. 704, 109–116 (2017)

    Article  CAS  Google Scholar 

  83. K. Yu, R. Gu, L.F. Wu et al., J. Alloy. Compd. 739, 892–896 (2018)

    Article  CAS  Google Scholar 

  84. K. Chen, M. Huang, Y. Shen et al., Solid State Ionics 235, 8–13 (2013)

    Article  CAS  Google Scholar 

  85. T. Phraewphiphat, M. Iqbal, K. Suzuki et al., J. Solid. State. Chem. 225, 431–437 (2015)

    Article  CAS  Google Scholar 

  86. V. Thangadurai, W. Weppner, J. Electrochem. Soc. 151, H1–H6 (2004)

    Article  CAS  Google Scholar 

  87. V. Thangadurai, A.K. Shukla, J. Gopalakrishnan, Chem. Mater. 11, 835–839 (1999)

    Article  CAS  Google Scholar 

  88. R. Inada, K. Kimura, K. Kusakabe et al., Solid State Ionics 261, 95–99 (2014)

    Article  CAS  Google Scholar 

  89. R. Yu, Q.X. Du, B.K. Zou et al., J. Power. Sources 306, 623–629 (2016)

    Article  CAS  Google Scholar 

  90. Y.Z. Kong, Y. Li, J.Y. Lu et al., J. Mater. Sci. Mater. Electron. 28, 8621–8629 (2017)

    Article  CAS  Google Scholar 

  91. Y.Z. Kong, Y. Li, J.W. Li et al., Ceram. Int. 44, 3947–3950 (2018)

    Article  CAS  Google Scholar 

  92. Y.T. Li, H.H. Xu, P.H. Chien et al., Angew. Chem. Int. Ed. 57, 8587–8591 (2018)

    Article  CAS  Google Scholar 

  93. L.L. Sun, Y.F. Li, G. Li et al., Ceram. Int. 45, 2381–2384 (2019)

    Article  CAS  Google Scholar 

  94. B.Y. Xu, B. Huang, H.Z. Liu et al., Electrochim. Acta 234, 1–6 (2017)

    Article  CAS  Google Scholar 

  95. X.L. Li, X.Y. Wang, D.S. Shao et al., J. Appl. Polym. Sci. 136, 47498 (2019)

    Article  CAS  Google Scholar 

  96. A.R. Polu, H.W. Rhee, J. Ind. Eng. Chem. 37, 347–353 (2016)

    Article  CAS  Google Scholar 

  97. S.R. Mohapatra, M.G. Nair, A.K. Thakur, Mater. Lett. 221, 232–235 (2018)

    Article  CAS  Google Scholar 

  98. S. Das, A. Ghosh, J. Appl. Phys. 117, 174103 (2015)

    Article  CAS  Google Scholar 

  99. C.H. Park, D.W. Kim, J. Prakash et al., Solid State Ionics 159, 111–119 (2003)

    Article  CAS  Google Scholar 

  100. S.U. Patil, S.S. Yawale, S.P. Yawale, Bull. Mater. Sci. 6, 1403–1409 (2014)

    Article  CAS  Google Scholar 

  101. S. Cheng, D.M. Smith, C.Y. Li, Macromolecules 48, 4503–4510 (2015)

    Article  CAS  Google Scholar 

  102. J.S. Lee, K. Heo, H.S. Kim et al., J. Alloy. Compd. 781, 553–559 (2019)

    Article  CAS  Google Scholar 

  103. P. Zhu, C. Yan, M. Dirican et al., J. Mater. Chem. A 6, 4279–4285 (2018)

    Article  CAS  Google Scholar 

  104. X.Y. Ban, We.Q. Zhang, N. Chen et al., J. Phys. Chem. C 122, 9852–9858 (2018)

    Article  CAS  Google Scholar 

  105. K. Liu, R.H. Zhang, J. Sun et al., ACS Appl. Mater. Interfaces 11, 46930–46937 (2019)

    Article  CAS  Google Scholar 

  106. J.Y. Bi, D.B. Mu, B.R. Wu et al., J. Mater. Chem. A 8, 706–713 (2020)

    Article  CAS  Google Scholar 

  107. H. Yang, J. Bright, B.H. Chen, J. Mater. Chem. A 8, 7261–7272 (2020)

    Article  CAS  Google Scholar 

  108. L. Zhu, P.H. Zhu, S.S. Yao et al., Int. J. Energy. Res. 43, 4854–4866 (2019)

    Article  CAS  Google Scholar 

  109. P. Sivaraj, K.P. Abhilash, B. Nalini et al., Macromol. Res. 28, 415–415 (2020)

    Article  CAS  Google Scholar 

  110. J. Bae, Y.T. Li, J. Zhang et al., Angew. Chem. Int. Ed. 57, 2096–2100 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51834004, 51774076, and 51704062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest to report.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Li, Y. Perovskite‐type Li‐ion solid electrolytes: a review. J Mater Sci: Mater Electron 32, 9736–9754 (2021). https://doi.org/10.1007/s10854-021-05699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05699-8

Navigation