Skip to main content
Log in

Effect of B-site substitution of (Li,La)TiO3 perovskites by di-, tri-, tetra- and hexavalent metal ions on the lithium ion conductivity

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report the synthesis and lithium ion conductivity of di-, tri-, tetra- and hexavalent metal ion B-site substituted (Li,La)TiO3(LLT) perovskites. All 5–10 mol% Mg, Al, Mn, Ge, Ru and W ion substituted LLTs crystallize in a simple cubic or tetragonal perovskite structure. Among the oxides investigated, the Al-substituted perovskite La0.55Li0.360.09Ti0.995Al0.005O3 (□=vacancy) exhibits the highest lithium ion conductivity of 1.1 × 10−3 S/cm at room temperature which is slightly higher than that of the undoped (Li,La)TiO3 perovskite (8.9 × 10−4 S/cm) at the same temperature. The lithium ion conductivity of substituted LLTs does not seem to depend on the concentration of the A-site ion vacancies and unit cell volume. The high ionic conductivity of Al-substituted LLT is attributed to the increase of the B(Al)-O bond and weakening of the A(Li,La)-O bond. The conductivity behavior of the doped LLT is being described on the basis of Gibbs free energy considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. G.A. Adachi, N. Imanaka and H. Aono, Adv. Mater.8, 127 (1996).

    Article  CAS  Google Scholar 

  2. A.D. Robertson, A.R. West and A.G. Ritchie, Solid State Ionics104, 1 (1997).

    Article  CAS  Google Scholar 

  3. W. Weppner and R.A. Huggins, J. Electrochem. Soc.124, 35 (1977).

    CAS  Google Scholar 

  4. H.Y.P. Hong, Mater. Res. Bull.13, 117 (1978).

    CAS  Google Scholar 

  5. P. Hartwig, W. Weppner and W. Wichelhaus, Mater. Res. Bull.14, 493 (1979).

    Article  CAS  Google Scholar 

  6. J. Kuwano and A.R. West, Mater. Res. Bull.15, 1661 (1980).

    Article  CAS  Google Scholar 

  7. M.A. Subaramanian, R. Subaramanian and A. Clearfield, Solid State Ionics18–19, 562 (1986).

    Google Scholar 

  8. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc.137, 1023 (1990); H. Aono, N. Imanaka and G. Adachi, Acc. Chem. Res.27, 265 (1994).

    CAS  Google Scholar 

  9. A.D. Robertson and A.R. West, Solid State Ionics58, 351 (1992).

    Article  CAS  Google Scholar 

  10. A.G. Belous, G.N. Novistskaya, S.V. Polyanetskaya and Yu.I. Gornikov, Izv. Akad, Nauk SSSR, Neorg. Mater.23, 470 (1987).

    CAS  Google Scholar 

  11. Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara, Solid State Commun.86, 689 (1993).

    Article  CAS  Google Scholar 

  12. Y. Inaguma, L. Chen, M. Itoh and T. Nakamura, Solid State Ionics70/71, 196 (1994).

    Article  Google Scholar 

  13. A.D. Robertson, S. Garcia Martin, A. Coats and A.R. West, J. Mater. Chem.5, 1405 (1995).

    CAS  Google Scholar 

  14. J.L. Fourquet, H. Duroy and M.P. Crosnier-Lopez, J. Solid State Chem.127, 283 (1996).

    Article  CAS  Google Scholar 

  15. P. Birke, S. Scharner, R.A. Huggins and W. Weppner, J. Electrochem Soc.144, L167 (1997).

    Google Scholar 

  16. M. Klingler, W.F. Chu and W. Weppner, Ionics3, 289 (1997).

    CAS  Google Scholar 

  17. M. Itoh, Y. Inaguma, W.H. Jung, L. Chen and T. Nakamura, Solid State Ionics70/71, 203 (1994).

    Article  Google Scholar 

  18. M. Morales and A.R. West, Solid State Ionics91, 33 (1996).

    Article  CAS  Google Scholar 

  19. H. Kawai and J. Kuwano, J. Electrochem. Soc.141, L78 (1994).

    Google Scholar 

  20. Y. Harada, T. Ishigaki, H. Kawai and J. Kuwano, Solid State Ionics108, 407 (1998).

    Article  CAS  Google Scholar 

  21. H.T. Chunk, J.G. Kim and H.G. Kim, Solid State Ionics107, 153 (1998).

    Google Scholar 

  22. I. Moreno, M. Morales and M.L.M. Sarrion, J. Solid State Chem.140, 377 (1998).

    Article  CAS  Google Scholar 

  23. O. Bohnke, C. Bohnke and J.L. Fourquet, Solid State Ionics91, 21 (1996).

    Article  CAS  Google Scholar 

  24. W. Losocha and K. Lewinski, J. Appl. Crystallogr.27, 437 (1994).

    Google Scholar 

  25. R.D. Shanon, Acta Crystallogr.A32, 751 (1976).

    Google Scholar 

  26. I. Barin, Thermodynamic data of pure substances, Part 1 and 2, VCH-Publications, New York (1993).

    Google Scholar 

  27. J.B. Goodenough, Prog. Solid State Chem.5, 313 (1971).

    Article  Google Scholar 

  28. N.S.P. Bhuvanesh and J. Gopalakrishnan, J. Mater. Chem.7, 2297 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangadurai, V., Weppner, W. Effect of B-site substitution of (Li,La)TiO3 perovskites by di-, tri-, tetra- and hexavalent metal ions on the lithium ion conductivity. Ionics 6, 70–77 (2000). https://doi.org/10.1007/BF02375549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375549

Keywords

Navigation