Skip to main content
Log in

Conductivity and electrochemical stability of perovskite-structured lithium–strontium–niobium–hafnium-oxide solid Li-ion conductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite-structured Li2x − ySr1 − xHf1 − yNbyO3 (x = 0.75y) solid state electrolytes with various Nb contents y = 0.25, 0.5, 0.75, 0.77 and 0.8 were prepared by conventional solid state reaction method at high temperature. Influence of compositions on structure and ionic conductivity of these perovskite-type ceramic electrolytes was studied. The crystalline structure, cross section microstructure, ionic conductivity and electronic conductivity were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), AC-impedance spectra and potentiostatic polarization experiment, respectively. All samples present perovskite structure. But impurity phases such as Nb2O5 and SrNb2O6 were detected. In this solid electrolyte system, a change from tetragonal perovskite structure to cubic perovskite structure was observed as the content of Nb was increased. Among these compositions, Li0.375Sr0.4375V0.1875Hf0.25Nb0.75O3 (V = vacancy) have the highest conductivity of σ = 2.91 × 10−5 S cm−1 at room temperature. Electronic conductivity for Li0.375Sr0.4375V0.1875Hf0.25Nb0.75O3 is negligible compare to its total conductivity. The interfacial electrochemical stability between Li0.375Sr0.4375V0.1875Hf0.25Nb0.75O3 solid electrolytes and electrodes was studied via cyclic voltammeter testing. Furthermore, all solid state Li battery Li/LSNH-3/LiNi0.5Mn1.5O4 were fabricated, but these batteries are unstable and could not operate. Li0.375Sr0.4375V0.1875Hf0.25Nb0.75O3 is unstable with metal Li, but it is stable when it is in contact with Li4Ti5O12 anode and high-voltage LiNi0.5Mn1.5O4 cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Kamaya, K. Homma, Y. Yamakawa, H. Masaaki, K. Ryoji, Y. Masao, K. Takashi, K. Yuki, H. Shigenori, K. Koji, M. Akio, Nat. Mater 10, 682–686 (2011)

    Article  Google Scholar 

  2. V. Hebbar, R. F. Bhajantri, J. Naik, J. Mater. Sci. Mater. Electron. (2017). doi:10.1007/s10854-016-6254-y

    Google Scholar 

  3. J.B. Goodenough, P. Singh, J. Electrochem. Soc 162, A2387–A2392 (2015)

    Article  Google Scholar 

  4. H. Amiri, M. Mohsennia, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-6095-8

    Google Scholar 

  5. R.D. Schmidt, J. Sakamoto, J. Power. Sources. 324, 126–133 (2016)

    Article  Google Scholar 

  6. R. Arunkumar, R. S. Babu, M. U. Rani, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5924-0

    Google Scholar 

  7. Y. Liu, B. Li, H. Kitaura, X. Zhang, M. Han, P. He, H.S. Zhou, ACS. Appl. Mater. Inter 7, 17307–17310 (2015)

    Article  Google Scholar 

  8. K. Deshmukh, M. B. Ahamed, A. R. Polu, K. K. Sadasivuni, S. K. K. Pasha, D. Ponnamma, M. Al-Ali AlMaadeed, R. R. Deshmukh, K. Chidambaram, J. Mater. Sci. Mater. Electron. 27, 11410–11424 (2016)

    Article  Google Scholar 

  9. Y. E. Firat, A. Peksoz, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5951-x

    Google Scholar 

  10. Y. Wang, W.H. Zhong, ChemElectroChem. 2, 22–36 (2015)

    Article  Google Scholar 

  11. R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Edit 46, 7778–7781 (2007)

    Article  Google Scholar 

  12. S. Duluard, A. Paillassa, L. Puech, P. Vinatier b, T. Viviane, P. Rozier, P. Lenormand, P.L. Taberna, P. Simona, F. Ansart, J. Eur. Ceram. Soc 33, 1145–1153 (2013)

    Article  Google Scholar 

  13. K.P. Abhilash, P.C. Selvin, B. Nalini, P. Nithyadharseni, B.C. Pillai, Ceram. Int. 39, 947–952 (2013)

    Article  Google Scholar 

  14. Y. Zhao, L.L. Daemen, J. Am. Chem. Soc. 134, 15042–15047 (2012)

    Article  Google Scholar 

  15. J.W. Fergus, J. Power Sources 195, 4554–4569 (2010)

    Article  Google Scholar 

  16. F. Aguesse, V. Roddatis, J. Roqueta, P. García, D. Pergolesi, J. Santiso, J.A. Kilner, Solid State Ionics 272, 1–8 (2015)

    Article  Google Scholar 

  17. K. Chen, M. Huang, Y. Shen, Y.H. Lin, C.W. Nan, Electrochimica. Acta. 80, 133–139 (2012)

    Article  Google Scholar 

  18. H. Geng, J. Lan, A. Mei, Y.H. Lin, C.W. Nan, Electrochimica. Acta. 56, 3406–3414 (2011)

    Article  Google Scholar 

  19. C.W. Ban, G.M. Choi, Solid State Ionics 140, 285–292 (2001)

    Article  Google Scholar 

  20. V. Thangadurai, A.K. Shukla, J. Gopalakrishnan, Chem. Mater. 11, 835–839 (1999)

    Article  Google Scholar 

  21. R. Yu, Q.X. Du, B.K. Zou, J. Power. Sources. 306, 623–629 (2016)

    Article  Google Scholar 

  22. B. Huang, B. Xu, Y. Li, W.D. Zhou, Y. You, S.W. Zhong, C.A. Wang, J.B. Goodenough, ACS. Appl. Mater. Inter 8, 14552–14557 (2016)

    Article  Google Scholar 

  23. C.H. Chen, S. Xie, E. Sperling, A.S. Yanga, G. Henriksen, K. Amine, Solid State Ionics 167, 263–272 (2004)

    Article  Google Scholar 

  24. V.M. Goldschmidt, Naturwissenschaften 14, 477–485 (1926)

    Article  Google Scholar 

  25. C.Y. Sun, K.Z. Fung, Solid. State. Commun. 123, 431–436 (2002)

    Article  Google Scholar 

  26. K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi, M. Tatsumisago, Electrochem. Commun 33, 51–54 (2013)

    Article  Google Scholar 

  27. R. Murugan, V. Thangadurai, W. Weppner, Angrew. Chem. Int Ed. 46, 7778–7781 (2007)

    Article  Google Scholar 

  28. L. Sebastian, A.K. Shukla, J. Gopalakrishnan, J. Chem. Sci 113, 427–433 (2001)

    Article  Google Scholar 

  29. M. Pérez-Estébanez, J. Isasi-Marín, A. Rivera-Calzada, C. Leon, M. Nygren, J. alloy. Compd. 651, 636–642 (2015)

    Article  Google Scholar 

  30. E. Zhao, F. Ma, Y. Jin, K. Kanamura, J. alloy. Compd. 680, 646–653 (2016)

    Article  Google Scholar 

  31. L. Dhivya, R. Murugan, ACS. Appl. Mater. Inter 6, 17606–17615 (2014)

    Article  Google Scholar 

  32. G. Oh, M. Hirayama, O. Kwon, K. Suzuki, R. Kanno, Chem. Mater 28, 2634–2640 (2016)

    Article  Google Scholar 

  33. A. Kraytsberg, E. Y. Ein, Adv. Energy. Mater. 2, 922–939 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China (NSFC-No.51474057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Li, Y., Lu, J. et al. Conductivity and electrochemical stability of perovskite-structured lithium–strontium–niobium–hafnium-oxide solid Li-ion conductors. J Mater Sci: Mater Electron 28, 8621–8629 (2017). https://doi.org/10.1007/s10854-017-6586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6586-2

Keywords

Navigation