Skip to main content
Log in

Phase structure and microwave dielectric properties of 0.85(0.74CaTiO3–0.26SmAlO3)–0.15Ca1.15Sm0.85Al0.85Ti0.15O4 composite ceramics prepared by reaction-sintering process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.85(0.74CaTiO3–0.26SmAlO3)–0.15Ca1.15Sm0.85Al0.85Ti0.15O4 (CSC) composite ceramics were prepared by a reaction-sintering method. The phase structure, sintering behavior and microwave dielectric properties of CSC ceramics were investigated. The preparation process of reaction-sintering route (RS) is simple. XRD patterns show that Ca0.74Ti0.74Sm0.26Al0.26O3 (similar to CaTiO3), SmAlO3 and Ca1.15Sm0.85Al0.85Ti0.15O4 phases are formed in the CSC ceramics. The grain size and dielectric constant of CSC ceramics increase with rising the sintering temperature. As the sintering temperature increases, the quality factor (Q × f) and τf value of the CSC ceramics increase to the maximum values first and then decrease. The bulk density fluctuates up and down around a value, but little change. The ceramics sintered at 1500 °C got the best microwave dielectric performances with εr = 35.9, Q × f = 49,221 GHz, τf = − 0.53 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.G. Wang, T.T. Yin, H.F. Zhou, X.B. Liu, J.J. Deng, S.X. Li, C.M. Lu, X.L. Chen, Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. J. Eur. Ceram. Soc 40(2), 381–385 (2020)

    Article  CAS  Google Scholar 

  2. Z. Yang, F. Luo, Y. Hu, D. Zhu, W. Zhou, Dielectric and microwave absorption properties of TiAlCo ceramic fabricated by atmospheric plasma spraying. Ceram. Int. 42(7), 8525–8530 (2016)

    Article  CAS  Google Scholar 

  3. L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Novel low-firing microwave dielectric ceramics: BaMV2O7 (M=Mg, Zn). Ceram. Int. 40(10), 16835–16839 (2014)

    Article  CAS  Google Scholar 

  4. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Article  Google Scholar 

  5. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  CAS  Google Scholar 

  6. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

    CAS  Google Scholar 

  7. D. Zhou, L.-X. Pang, D.W. Wang, C. Li, B.B. Jin, I.M. Reaney, High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 5(38), 10094–10098 (2017)

    Article  CAS  Google Scholar 

  8. D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, I.M. Reaney, Novel temperature stable high-epsilon(r) microwave dielectrics in the Bi2O3-TiO2-V2O5 system. J. Mater. Chem. C 4(23), 5357–5362 (2016)

    Article  CAS  Google Scholar 

  9. G. Wang, D. Zhang, G. Gan, Y. Yang, Y. Rao, F. Xu, H. Zhang, Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram. Int. 45(16), 19766–19770 (2019)

    Article  CAS  Google Scholar 

  10. L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102(5), 2278–2282 (2019)

    Article  CAS  Google Scholar 

  11. B. Jancar, D. Suvorov, M. Valant, Microwave dielectric properties of CaTiO3-NdAlO3 ceramics. J. Mater. Sci. Lett. 20(1), 71–72 (2001)

    Article  CAS  Google Scholar 

  12. S. Wu, C. Jiang, Y. Mei, W. Tu, Synthesis and microwave dielectric properties of Sm2SiO5 ceramics. J. Am. Ceram. Soc. 95(1), 37–40 (2012)

    Article  CAS  Google Scholar 

  13. C.F. Xing, Y.H. Zhang, B.J. Tao, H.T. Wu, Y.Y. Zhou, Crystal structure, infrared spectra and microwave dielectric properties of low-firing La2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. Ceram. Int. 45(17), 22376–22382 (2019)

    Article  CAS  Google Scholar 

  14. I.N. Lin, C.B. Chang, K.C. Leou, H.F. Cheng, Effect of reaction sintering process on the microwave dielectric properties of Ba2Ti9O20 materials. J. Eur. Ceram. Soc 30(2), 159–163 (2010)

    Article  CAS  Google Scholar 

  15. H.T. Yu, T. Luo, L. He, J.S. Liu, Effect of ZnO on Mg2TiO4-MgTiO3-CaTiO3 microwave dielectric ceramics prepared by reaction sintering route. Adv. Appl. Ceram. 118(3), 98–105 (2019)

    Article  CAS  Google Scholar 

  16. T. Luo, Q. Yang, H. Yu, J. Liu, Formation mechanism and microstructure evolution of Ba2Ti9O20 ceramics by reaction sintering method. J. Am. Ceram. Soc. 103(2), 1079–1087 (2020)

    Article  CAS  Google Scholar 

  17. J. Liu, B. Yang, J.Q. Liu, Development of environmental-friendly BZT-BCT/P(VDF-TrFE) composite film for piezoelectric generator. J. Mater. Sci. Mater. Electron 29(3), 17764–17770 (2018)

    Article  CAS  Google Scholar 

  18. H. Zhou, W. Sun, X. Liu, K. Wang, H. Ruan, X. Chen, Microwave dielectric properties of LiCa3ZnV3O12 and NaCa2Mg2V3O12 ceramics prepared by reaction-sintering. Ceram. Int. 45(2), 2629–2634 (2019)

    Article  CAS  Google Scholar 

  19. L. He, H. Yu, M. Zeng, E. Li, J. Liu, S. Zhang, Phase compositions and microwave dielectric properties of MgTiO3-based ceramics obtained by reaction-sintering method. J. Electroceram. 40(4), 360–364 (2018)

    Article  CAS  Google Scholar 

  20. T. Luo, L. He, H. Yang, H. Yu, Phase evolution and microwave dielectric properties of BaTi4O9 ceramics prepared by reaction sintering method. Int. J. Appl. Ceram. Technol. 16(1), 146–151 (2019)

    Article  CAS  Google Scholar 

  21. G. Wang, D. Zhang, G. Gan, Y. Yang, Y. Rao, F. Xu, X. Huang, Y. Liao, J. Li, C. Liu, L. Jin, H. Zhang, Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram. Int. 45(16), 19766–19770 (2019)

    Article  CAS  Google Scholar 

  22. C.M. Alvarez-Docio, J.J. Reinosa, G. Canu, M.T. Buscaglia, V. Buscaglia, J.F. Fernandez, Revealing the role of the Intermediates during the synthesis of BaTi5O11. Inorg. Chem. 58(12), 8120–8129 (2019)

    Article  Google Scholar 

  23. L.M. Zhang, Y. Chang, M. Xin, X.F. Luo, H.J. Tao, Y. Fu, P.Z. Li, H.Q. Zhou, Synthesis of 0.65CaTiO3–0.35SmAlO3 ceramics and effects of La2O3/SrO doping on their microwave dielectric properties. J. Mater. Sci. Mater. Electron. 29(24), 21205–21212 (2018)

    Article  CAS  Google Scholar 

  24. X.C. Fan, M.M. Mao, X.M. Chen, Microstructures and microwave dielectric properties of the CaSmAlO4-based ceramics. J. Am. Ceram. Soc. 91(9), 2917–2922 (2008)

    Article  CAS  Google Scholar 

  25. Z. Qin, Y. Huang, C. Shen, M. Tang, Effect of preparation method on microwave dielectric properties of 0.7CaTiO3–0.3SmAlO3 ceramic. J. Mater. Sci. Mater. Electron. 27(4), 4157–4162 (2016)

    Article  CAS  Google Scholar 

  26. J.M. Li, C.M. Zhang, H. Liu, T. Qiu, C.G. Fan, Structure, morphology, and microwave dielectric properties of SmAlO3 synthesized by stearic acid route. J. Adv. Ceram. 9(5), 558–566 (2020)

    Article  CAS  Google Scholar 

  27. R. Freer, F. Azough, Microstructural engineering of microwave dielectric ceramics. J. Eur. Ceram. Soc. 28(7), 1433–1441 (2008)

    Article  CAS  Google Scholar 

  28. X.-K. Lan, J. Li, Z.-Y. Zou, G.-F. Fan, W.-Z. Lu, W. Lei, Lattice structure analysis and optimised microwave dielectric properties of LiAl1–x(Zn0.5Si0.5)xO2 solid solutions. J. Eur. Ceram. Soc. 39(3), 2360–2364 (2019)

    Article  CAS  Google Scholar 

  29. K.G. Wang, H.F. Zhou, X.B. Liu, W.D. Sun, X.L. Chen, H. Ruan, A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. J. Eur. Ceram. Soc. 39(4), 1122–1126 (2019)

    Article  Google Scholar 

  30. H.F. Zhou, X.H. Tan, J. Huang, N. Wang, G.C. Fan, X.L. Chen, Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1–xLi2xTixO1+2x solid solution ceramics. J. Alloys Compd. 696, 1255–1259 (2017)

    Article  CAS  Google Scholar 

  31. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic. J. Eur. Ceram. Soc. 32(2), 261–265 (2012)

    Article  CAS  Google Scholar 

  32. X.L. Chen, H.F. Zhou, L.A. Fang, X.B. Liu, Y.L. Wang, Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J. Alloys Compd. 509(19), 5829–5832 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001 and 2017GXNSFDA198027) and High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, K., Luan, X. et al. Phase structure and microwave dielectric properties of 0.85(0.74CaTiO3–0.26SmAlO3)–0.15Ca1.15Sm0.85Al0.85Ti0.15O4 composite ceramics prepared by reaction-sintering process. J Mater Sci: Mater Electron 32, 8863–8871 (2021). https://doi.org/10.1007/s10854-021-05559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05559-5

Navigation