Skip to main content

Advertisement

Log in

Heteroatom‐doped nanoporous carbon with high rate performance as anode for sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heteroatom doping was considered as an effective strategy to improve the electrochemical performance of carbon anode material for sodium-ion batteries (SIBs). In this work, heteroatom (N, P and O)-doped nanoporous carbon (HDNPC) was obtained through a simple pyrolysis process using ionic liquid as a source of heteroatoms. The synergistic effect of nanoporous structure and the heteroatom doping in the carbon framework provides the HDNPC with abundant defects and active sites, enlarged interlay space and short ion diffusion distance, which favor Na+ intercalation/deintercalation and thus improve the specific capacity and rate performance of the HDNPC. As a result, when used as anode material for SIBs, the HDNPC exhibits reversible capacities of 226.6, 200.2, 173.9, 155.6, 137.4 and 126.8 mAh g− 1 at 0.1, 0.2, 0.5, 1, 2 and 3A g− 1, respectively, and delivers a capacity of 114.3 mAh g− 1 at a current density of 5.0 A g− 1 after 500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j

    Article  CAS  Google Scholar 

  2. P. Ge, M. Fouletier, Electrochemical intercalation of sodium in graphite. Solid State Ion. 28(30), 1172–1175 (1988). https://doi.org/10.1016/0167-2738(88)90351-7

    Article  Google Scholar 

  3. H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898

    Article  CAS  Google Scholar 

  4. Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957

    Article  CAS  Google Scholar 

  5. B. Yuan, L. Zeng, X. Sun, Y. Yu, Q. Wang, Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing. Nano Res. 11(4), 2256–2264 (2018). https://doi.org/10.1007/s12274-017-1847-1

    Article  CAS  Google Scholar 

  6. W. Luo, Z. Jian, Z. Xing, W. Wang, C. Bommier, M.M. Lerner, X. Ji, Electrochemically expandable soft carbon as anodes for Na-Ion batteries. ACS Cent. Sci. 1(9), 516–522 (2015). https://doi.org/10.1021/acscentsci.5b00329

    Article  CAS  Google Scholar 

  7. F. Wu, L. Liu, Y. Yuan, Y. Li, Y. Bai, T. Li, J. Lu, C. Wu, Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-Ion storage. ACS Appl. Mater. Interfaces 10(32), 27030–27038 (2018). https://doi.org/10.1021/acsami.8b08380

    Article  CAS  Google Scholar 

  8. Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013). https://doi.org/10.1016/j.carbon.2013.01.064

    Article  CAS  Google Scholar 

  9. P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8(8), 1702434 (2018). https://doi.org/10.1002/aenm.201702434

    Article  CAS  Google Scholar 

  10. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. commun. 5(1), 1–10 (2014). https://doi.org/10.1038/ncomms5033

    Article  CAS  Google Scholar 

  11. M. Lu, W. Yu, J. Shi, W. Liu, S. Chen, X. Wang, H. Wang, Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries. Electrochim. Acta 251, 396–406 (2017). https://doi.org/10.1016/j.electacta.2017.08.131

    Article  CAS  Google Scholar 

  12. Y. He, X. Han, Y. Du, B. Song, B. Zhang, W. Zhang, P. Xu, Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res. 11(5), 2573–2585 (2018). https://doi.org/10.1007/s12274-017-1882-y

    Article  CAS  Google Scholar 

  13. J. Ye, J. Zang, Z. Tian, M. Zheng, Q. Dong, Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 4, 13223–13227 (2016). https://doi.org/10.1039/C6TA04592H

    Article  CAS  Google Scholar 

  14. S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang, X.W.D. Lou, Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6(7), 1502217 (2016). https://doi.org/10.1002/aenm.201502217

    Article  CAS  Google Scholar 

  15. Y. Liu, Y. Qiao, G. Wei, S. Li, Z. Lu, X. Wang, X. Lou, Insight into the sodium storage mechanism of N, S co-doped nanoporous carbon: experimental design and theoretical evaluation. Energy Storage Mater. 11, 274–281 (2017). https://doi.org/10.1016/j.ensm.2017.09.003

    Article  Google Scholar 

  16. J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, Carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29(6), 1604108 (2017). https://doi.org/10.1002/adma.201604108

    Article  CAS  Google Scholar 

  17. L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2(12), 1500195 (2015). https://doi.org/10.1002/advs.201500195

    Article  CAS  Google Scholar 

  18. G. Zou, C. Wang, H. Hou, C. Wang, X. Qiu, X. Ji, Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries. Small 13(31), 1700762 (2017). https://doi.org/10.1002/smll.201700762

    Article  CAS  Google Scholar 

  19. Q. Jin, W. Li, K. Wang, H. Li, P. Feng, Z. Zhang, W. Wang, K. Jiang, Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high‐performance sodium storage. Adv. Funct. Mater. 30(14), 1909907 (2020). https://doi.org/10.1002/adfm.201909907

    Article  CAS  Google Scholar 

  20. D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, L. Zhang, A. Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion Batteries. Adv. Energy Mater. 6(6), 1501929 (2016). https://doi.org/10.1002/aenm.201501929

    Article  CAS  Google Scholar 

  21. D. Qin, Z. Liu, Y. Zhao, G. Xu, F. Zhang, X. Zhang, A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 130, 664–671 (2018). https://doi.org/10.1016/j.carbon.2018.01.007

    Article  CAS  Google Scholar 

  22. Y. Miao, J. Zong, X. Liu, Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries. Mater. Lett. 188, 355–358 (2017). https://doi.org/10.1016/j.matlet.2016.11.110

    Article  CAS  Google Scholar 

  23. Z. Cui, S. Wang, Y. Zhang, M. Cao, A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction. J. Power Sources 259, 138–144 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.084

    Article  CAS  Google Scholar 

  24. H. Wu, L. Shi, J. Lei, D. Liu, Z. DeyuQu, X. Xie, P. Du, X. Yang, J. Hu, H. Li, Tang, Nitrogen and sulfur co-doped carbon with three-dimensional ordered macroporosity: an efficient metal-free oxygen reduction catalyst derived from ionic liquid. J. Power Sources 323, 90–96 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.044

    Article  CAS  Google Scholar 

  25. P.F. Fulvio, J.S. Lee, R.T. Mayes, X. Wang, S.M. Mahurin, S. Dai, Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Phys. Chem. Chem. Phys. 13(30), 13486–13491 (2011). https://doi.org/10.1039/c1cp20631a

    Article  CAS  Google Scholar 

  26. Y. Meng, Y. Li, J. Xia, Q. Hu, X. Ke, G. Ren, F. Zhu, F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries. Appl. Surf. Sci. 476, 761–768 (2019). https://doi.org/10.1016/j.apsusc.2019.01.139

    Article  CAS  Google Scholar 

  27. B.J.S. Lee, X. Wang, H. Luo, S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids. Adv. Mater. 22(9), 1004–1007 (2010). https://doi.org/10.1002/adma.200903403

    Article  CAS  Google Scholar 

  28. M. Du, Y. Meng, C. Duan, C. Wang, F. Zhu, Y. Zhang, Nitrogen–sulfur co-doped porous carbon prepared using ionic liquids as a dual heteroatom source and their application for Li-ion batteries. J. Mater. Sci.-Mater. Electron. 29(21), 18179–18186 (2018). https://doi.org/10.1007/s10854-018-9930-2

    Article  CAS  Google Scholar 

  29. M. Du, Y. Meng, C. Wang, C. Duan, F. Zhu, Y. Zhang, A simple synthesis of nitrogen-sulfur co-doped porous carbon using ionic liquids as dopant for high rate performance Li-ion batteries. J. Electroanal. Chem. 834, 17–25 (2019). https://doi.org/10.1016/j.jelechem.2018.12.042

    Article  CAS  Google Scholar 

  30. A. Vu, Y. Qian, A. Stein, Porous electrode materials for lithium-ion batteries - how to prepare them and what makes them special. Adv. Energy Mater. 2(9), 1056–1085 (2012). https://doi.org/10.1002/aenm.201200320

    Article  CAS  Google Scholar 

  31. J. Xiang, W. Lv, C. Mu, J. Zhao, B. Wang, Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J. Alloys Compd. 701, 870–874 (2017). https://doi.org/10.1016/j.jallcom.2017.01.206

    Article  CAS  Google Scholar 

  32. C. Wang, Y. Xiong, H. Wang, C. Jin, Q. Sun, Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J. Mater. Chem. A 5(30), 15759–15770 (2017). https://doi.org/10.1039/c7ta04178k

    Article  CAS  Google Scholar 

  33. C. Li, Q. Fu, K. Zhao, Y. Wang, H. Tang, H. Li, H. Jiang, L. Chen, Nitrogen and phosphorous dual-doped graphene aerogel as an ultrafast and longterm cycling anode material for sodium-ion batteries. Carbon 6(11), 15083–15091 (2018). https://doi.org/10.1021/acssuschemeng.8b03561

    Article  CAS  Google Scholar 

  34. X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040

    Article  CAS  Google Scholar 

  35. C.M. Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet, C. Vix-Guterl, Insights on the Na + ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018). https://doi.org/10.1016/j.nanoen.2017.12.013

    Article  CAS  Google Scholar 

  36. N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu, H. Liu, Z. Wang, P. Zhang, B. Xu, Extended “Adsorption–Insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9(32), 1901351 (2019). https://doi.org/10.1002/aenm.201901351

    Article  CAS  Google Scholar 

  37. M.R. Ammar, J.-N. Rouzaud, How to obtain a reliable structural characterization of polished graphitized carbons by Raman microspectroscopy. J. Raman Spectrosc 43(2), 207–211 (2012). https://doi.org/10.1002/jrs.3014

    Article  CAS  Google Scholar 

  38. J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94, 189–195 (2015). https://doi.org/10.1016/j.carbon.2015.06.076

    Article  CAS  Google Scholar 

  39. N. Sinan, E. Unur, Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials. J. Energy Chem. Commun. (Camb) 26, 783–789 (2017). https://doi.org/10.1016/j.jechem.2017.04.011

    Article  Google Scholar 

  40. P.K. Kar, G. Singh, Evaluation of nitrilotrimethylene phosphonic acid and nitrilotriacetic acid as corrosion inhibitors of mild steel in sea water. ISRN Mater. Sci. (2011). https://doi.org/10.5402/2011/167487

    Article  Google Scholar 

  41. G. Zou, H. Hou, G. Zhao, Z. Huang, P. Ge, X. Ji, Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chem. 19(19), 4622–4632 (2017). https://doi.org/10.1039/c7gc01942d

    Article  CAS  Google Scholar 

  42. P. Tian, J. Zang, S. Jia, Y. Zhang, H. Gao, S. Zhou, W. Wang, H. Xu, Y. Wang, Preparation of S/N co-doped graphene through a self-generated high gas pressure for high rate supercapacitor. Appl. Surf. Sci. 456, 781–788 (2018). https://doi.org/10.1016/j.apsusc.2018.06.213

    Article  CAS  Google Scholar 

  43. L. Ma, R. Chen, Y. Hu, G. Zhu, T. Chen, H. Lu, J. Liang, Z. Tie, Z. Jin, J. Liu, Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale 8(41), 17911–17918 (2016). https://doi.org/10.1039/c6nr06307a

    Article  CAS  Google Scholar 

  44. M. Yu, Z. Yin, G. Yan, Z. Wang, H. Guo, G. Li, Y. Liu, L. Li, J. Wang, Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber. J. Power Sources 449(15), 227514 (2020). https://doi.org/10.1016/j.jpowsour.2019.227514

    Article  CAS  Google Scholar 

  45. C. Yu, H. Hou, X. Liu, Y. Yao, Q. Liao, Z. Dai, D. Li, Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int. J. Hydrog. Energy 43(6), 3253–3260 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.151

    Article  CAS  Google Scholar 

  46. C. Li, J. Li, Y. Zhang, X. Cui, H. Lei, G. Li, Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries. J. Mater. Sci. 54(7), 5641–5657 (2018). https://doi.org/10.1007/s10853-018-03229-2

    Article  CAS  Google Scholar 

  47. D. Li, L. Zhang, H. Chen, L. Ding, S. Wang, H. Wang, Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem. Commun. 51(89), 16045–16048 (2015). https://doi.org/10.1039/c5cc06266g

    Article  CAS  Google Scholar 

  48. C. Zhou, D. Wang, A. Li, E. Pan, H. Liu, X. Chen, M. Jia, H. Song, Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem. Eng. J. 380(15), 122457 (2020). https://doi.org/10.1016/j.cej.2019.122457

    Article  CAS  Google Scholar 

  49. G.-L. Xu, Z. Chen, G.-M. Zhong, Y. Liu, Y. Yang, T. Ma, Y. Ren, X. Zuo, X.-H. Wu, X. Zhang, K. Amine, Nanostructured black phosphorus/ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 16(6), 3955–3965 (2016). https://doi.org/10.1021/acs.nanolett.6b01777

    Article  CAS  Google Scholar 

  50. Z. Yu, J. Song, D. Wang, D. Wang, Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures. Nano Energy 40, 550–558 (2017). https://doi.org/10.1016/j.nanoen.2017.08.019

    Article  CAS  Google Scholar 

  51. Y. Wang, Y. Li, S.S. Mao, D. Ye, W. Liu, R. Guo, Z. Feng, J. Kong, J. Xie, N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. Sustain Energy Fuels 3(3), 717–722 (2019). https://doi.org/10.1039/c8se00590g

    Article  CAS  Google Scholar 

  52. Y. Zhang, L. Li, W. Hong, T. Qiu, L. Xu, G. Zou, H. Hou, X. Ji, S. Li, Influence of P doping on Na and K storage properties of N-rich carbon nanosheets. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.121809

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NFSC) (Grant Nos. 51364024, 51404124 and 52064035) and the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology (SKLAB02019015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Ren or Fuliang Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Lin, R., Duan, M. et al. Heteroatom‐doped nanoporous carbon with high rate performance as anode for sodium-ion batteries. J Mater Sci: Mater Electron 32, 8295–8303 (2021). https://doi.org/10.1007/s10854-021-05343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05343-5

Navigation