Skip to main content
Log in

Microwave-assisted synthesized and characterization of BiFeO3(CTAB/PEG/PVA) nanocomposites by the auto-combustion method with efficient visible-light photocatalytic dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple green route of bismuth ferrite (BiFeO3) was prepared by a reaction an auto-combustion method with the addition of CTAB, PVA, and PEG surfactant. The microwave irradiation was operated by 900 W power under 2 min. The characterization of BiFeO3 and BiFeO3(CTAB/PVA/PEG) nanocomposites has been performed by the XRD, FT-IR, PL, VSM, DRS, FE-SEM, CV, EIS, and UV–Vis spectroscopy analysis, respectively. The XRD analysis was displayed that highly crystallization nanocomposites with rhombohedral structure is obtained magnetization with Ms = 0.68 emu g−1 that has been found in VSM measurement analysis. The electrochemical measurements of the synthesized nanocomposites displayed a good performance at 100 mV.s−1 scan rate. Also, the optical properties indicated that the bandgap of samples was around ~ 2 in the visible range. Moreover, the photocatalytic performances of the BiFeO3(CTAB/PVA/PEG) nanocomposites have illustrated the degradation of methyl orange (MO) as typical organic dye pollution under visible-light irradiation of 10 W white LED lamp. Moreover, the experimental results showed that the BiFeO3-CTAB nanocomposite has the highest degradation of MO dye pollution was in aqueous solution increased to 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Singh, S. Dutta, Adv. Powder Technol. 29, 211 (2018)

    Article  CAS  Google Scholar 

  2. P. Mehdizadeh, O. Amiri, S. Rashki, M. Salavati-Niasari, M. Salimian, L.K. Foong, Ultrason. Sonochem. 61, 104848 (2020)

    Article  CAS  Google Scholar 

  3. Y. Huo, Y. Jin, Y. Zhang, J. Mol. Catal. A: Chem. 33, 15 (2010)

    Article  Google Scholar 

  4. M. Rabbani, R. Rahimi, H.F. Ghadi, J. Sol-Gel. Sci. Technol. 87, 340 (2018)

    Article  CAS  Google Scholar 

  5. R. Das, D. Kim, S. Baek et al., Appl. Phys. Lett. 88, 242904 (2006)

    Article  Google Scholar 

  6. K.A. McDonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Chem. Phys. Lett. 572, 78 (2013)

    Article  CAS  Google Scholar 

  7. C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, J. Cryst. Growth 291, 135 (2006)

    Article  CAS  Google Scholar 

  8. L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Cryst. Growth Des. 1, 1049 (2011)

    Article  Google Scholar 

  9. M. Valant, A.-K. Axelsson, N. Alford, Chem. Mater. 19, 5431 (2007)

    Article  CAS  Google Scholar 

  10. Z.-C. Qiu, J.-P. Zhou, G. Zhu et al., J. Nanosci. Nanotechnol. 12, 6552 (2012)

    Article  CAS  Google Scholar 

  11. T. Fan, C. Chen, Z. Tang, RSC Adv. 6, 9994 (2016)

    Article  CAS  Google Scholar 

  12. H. Ke, W. Wang, Y. Wang et al., J. Alloy. Compd. 509, 2192 (2011)

    Article  CAS  Google Scholar 

  13. J.K. Kim, S.S. Kim, W.-J. Kim, Mater. Lett. 59, 4006 (2005)

    Article  CAS  Google Scholar 

  14. M. Sahni, S. Mukaherjee, A. Hamid, D. Kumar, S. Chauhan, N. Kumar, J. Mater. Sci.: Mater. Electron. 31, 7798 (2020)

    CAS  Google Scholar 

  15. S. Chauhan, B. Tripathi, M. Kumar, M. Sahni, R. Singh, S. Singh, J. Mat. Sci. Mat. Elect 1 (2020)

  16. L. Zhang, X.-F. Cao, Y.-L. Ma, X.-T. Chen, Z.-L. Xue, J. Solid State Chem. 183, 1761 (2010)

    Article  CAS  Google Scholar 

  17. N. Das, R. Majumdar, A. Sen, H.S. Maiti, Mater. Lett. 61, 2100 (2007)

    Article  CAS  Google Scholar 

  18. S. Godara, N. Sinha, G. Ray, B. Kumar, Journal of Asian Ceramic Societies 2, 416 (2014)

    Article  Google Scholar 

  19. X Wang, Yg Zhang, Z Wu (2010) Materials Letters 64: 486.

  20. T. Liu, Y. Xu, J. Zhao, J. Am. Ceram. Soc. 93, 3637 (2010)

    Article  CAS  Google Scholar 

  21. L. Xiaomeng, X. Jimin, S. Yuanzhi, L. Jiamin, J. Mater. Sci. 42, 6824 (2007)

    Article  Google Scholar 

  22. O. Bajpai, J. Kamdi, M. Selvakumar, S. Ram, D. Khastgir, S. Chattopadhyay, Express Polym. Lett. 8, 669 (2014)

    Article  CAS  Google Scholar 

  23. K. Chybczynska, M. Blaszyk, B. Hilczer, T. Lucinski, M. Matczak, B. Andrzejewski, Mater. Res. Bull. 86, 178 (2017)

    Article  CAS  Google Scholar 

  24. J. Yang, X. Li, J. Zhou, Y. Tang, Y. Zhang, Y. Li, J. Alloy. Compd. 509, 9271 (2011)

    Article  CAS  Google Scholar 

  25. P. Ahmadi, S. Alamolhoda, S.M. Mirkazemi, J. Supercond. Novel Magn. 31, 3307 (2018)

    Article  CAS  Google Scholar 

  26. R. Rahimi, A. Mehrehjedy, S. Zargari, Environ Prog Sustain Energy 36, 1439 (2017)

    Article  CAS  Google Scholar 

  27. G. Wu, S.S. Thind, J. Wen, K. Yan, A. Chen, Appl. Catal. B 142, 590 (2013)

    Article  Google Scholar 

  28. A.B. Djurišić, Y.H. Leung, A.M.C. Ng, Mater Horiz 1, 400 (2014)

    Article  Google Scholar 

  29. J. Khajonrit, U. Wongpratat, P. Kidkhunthod, S. Pinitsoontorn, S. Maensiri, J. Magn. Magn. Mater. 449, 423 (2018)

    Article  CAS  Google Scholar 

  30. J. Khajonrit, N. Prasoetsopha, T. Sinprachim, P. Kidkhunthod, S. Pinitsoontorn, S. Maensiri, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 015010 (2017)

    Google Scholar 

  31. J. Khajonrit, S. Phumying, S. Maensiri, Jpn. J. Appl. Phys. 55, 06GJ14 (2016)

    Article  Google Scholar 

  32. L. Durai, B. Moorthy, C.I. Thomas, D.K. Kim, K.K. Bharathi, Mater. Sci. Semicond. Process. 68, 165 (2017)

    Article  Google Scholar 

  33. S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, J. Phys. Chem. C 114, 2903 (2010)

    Article  CAS  Google Scholar 

  34. S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss et al., J. Alloy. Compd. 493, 569 (2010)

    Article  CAS  Google Scholar 

  35. Z. Chen, Y. Li, Y. Wu, J. Hu, J. Mater. Sci.: Mater. Electron. 23, 1402 (2012)

    Google Scholar 

  36. K.S. Kumar, M. Ramanadha, A. Sudharani, S. Ramu, R. Vijayalakshmi, J. Supercond. Novel Magn. 32, 1035 (2019)

    Article  CAS  Google Scholar 

  37. X. Wang, W. Mao, Q. Wang et al., RSC Adv. 7, 10064 (2017)

    Article  CAS  Google Scholar 

  38. J. Dai, T. Xian, L. Di, H. Yang, J. Nanomater. 2013, 1 (2013)

    Google Scholar 

  39. E. Moradi, R. Rahimi, V. Safarifard, Polyhedron 159, 251 (2019)

    Article  CAS  Google Scholar 

  40. E. Moradi, R. Rahimi, V. Safarifard, J. Solid State Chem, 121397 (2020)

  41. E. Moradi, R. Rahimi, V. Safarifard, J. Solid State Chem, 121277 (2020).

  42. F. Gao, X. Chen, K. Yin et al., Adv. Mater. 19, 2889 (2007)

    Article  CAS  Google Scholar 

  43. S. Li, Y.-H. Lin, B.-P. Zhang, J.-F. Li, C.-W. Nan, J. Appl. Phys. 105, 054310 (2009)

    Article  Google Scholar 

  44. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982)

    Article  CAS  Google Scholar 

  45. C. Lokhande, T. Gujar, V. Shinde, R.S. Mane, S.-H. Han, Electrochem. Commun. 9, 1805 (2007)

    Article  CAS  Google Scholar 

  46. D. Moitra, C. Anand, B.K. Ghosh, M. Chandel, N.N. Ghosh, ACS Appl. Energy Mater. 1, 464 (2018)

    Article  CAS  Google Scholar 

  47. K. Karthikeyan, A. Thirumoorthi, Int J Appl Sci. Res. 2, 51 (2017)

    Google Scholar 

  48. Y. Wang, L. Wang, W. Huang et al., J. Mater. Chem. A 5, 8385 (2017)

    Article  CAS  Google Scholar 

  49. Y. Yang, Y. Liu, J. Wei, C. Pan, R. Xiong, J. Shi, RSC Adv. 4, 31941 (2014)

    Article  CAS  Google Scholar 

  50. P. Dong, Y. Wang, B. Cao et al., Appl. Catal. B 132, 45 (2013)

    Article  Google Scholar 

  51. H. Liu, Y. Guo, B. Guo, D. Zhang, Solid State Sci. 19, 69 (2013)

    Article  CAS  Google Scholar 

  52. M. Basith, R. Ahsan, I. Zarin, M. Jalil, Sci. Rep. 8, 11090 (2018)

    Article  CAS  Google Scholar 

  53. N.N. Dao, M. Dai Luu, N.C. Pham et al., Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 045003 (2016)

    Google Scholar 

  54. X. Wang, W. Mao, J. Zhang et al., J. Colloid Interf. Sci. 448, 17 (2015)

    Article  CAS  Google Scholar 

  55. L. Di, H. Yang, T. Xian, X. Chen, Materials 10, 1118 (2017)

    Article  Google Scholar 

  56. S. Irfan, L. Li, A.S. Saleemi, C.-W. Nan, J. Mater. Chem. A 5, 11143 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this investigation by Iran University of Science and Technology and Iran’s National Elites Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmatollah Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, E., Farajnejad Ghadi, H., Rabbani, M. et al. Microwave-assisted synthesized and characterization of BiFeO3(CTAB/PEG/PVA) nanocomposites by the auto-combustion method with efficient visible-light photocatalytic dye degradation. J Mater Sci: Mater Electron 32, 8237–8248 (2021). https://doi.org/10.1007/s10854-020-05202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05202-9

Navigation