Skip to main content
Log in

A comprehensive research on BiFeO3/TiO2 nanocomposite synthesized via thermal treatment/hydrolysis precipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper aims to synthesize and describe BiFeO3/TiO2 nanocomposite with enhanced visible-light activity. At first, BiFeO3 nanoparticles were successfully synthesized by the thermal treatment method, and then titania nanoparticles were prepared by hydrolysis precipitation process. Composite nanoparticles were synthesized at different ratios of ferrite to titania. To characterize the nanocomposites’ structure, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller analysis were applied. The UV–visible diffuse reflectance spectra showed that redshift in the absorption spectra of the nanocomposites was significantly related to the ratio of ferrite to titania. Moreover, the photocatalytic activity of the nanocomposites was researched under visible light, discussing Congo red dye degradation. The best result was obtained by the BiFeO3/TiO2 (1:1), which the photocatalytic degradation efficiency reached 60% after 30 min of irradiation. PL spectroscopy was applied as a practical technique to examine the separation efficiency of the photogenerated carrier pairs. The accordance between PL and photocatalytic results showed vital role of the constructed heterojunction in the nanocomposites to prevent the charge carrier recombination. Also, the synthesized BiFeO3/TiO2 (1:1) nanocomposite showed a suitable reusability in the model pollutant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig. 9

Similar content being viewed by others

References

  1. V.A. Ganesh, H.K. Raut, A.S. Nair, S. Ramakrishna, A review on self-cleaning coatings. J. Mater. Chem. 21, 16304–16322 (2011)

    Article  Google Scholar 

  2. Q. Yu, M. Ballari, H. Brouwers, Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinet. study, Appl. Catal. B: Environ. 99, 58–65 (2010)

    Article  Google Scholar 

  3. S. Li, Y.-H. Lin, B.-P. Zhang, J.-F. Li, C.-W. Nan, BiFeO 3/TiO 2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. J. Appl. Phys. 105(5), 054310 (2009)

    Article  ADS  Google Scholar 

  4. M.R. Islam, M. Zubair, M. Bashar, A. Rashid, Bi 0.9 Ho 0.1 FeO 3/TiO 2 composite thin films: synthesis and study of optical, electrical and magnetic properties. Sci. Rep. 9, 1–13 (2019)

    Google Scholar 

  5. J. Ćirković, A. Radojković, D.L. Golić, N. Tasić, M. Čizmić, G. Branković, Z. Branković, Visible-light photocatalytic degradation of Mordant Blue 9 by single-phase BiFeO3 nanoparticles. J. Environ. Chem. Eng. 9, 104587 (2021)

    Article  Google Scholar 

  6. Y. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, Spatially selective visible light photocatalytic activity of TiO 2/BiFeO 3 heterostructures. J. Mater. Chem. 21, 4168–4174 (2011)

    Article  Google Scholar 

  7. Y. Yang, Y. Liu, J. Wei, C. Pan, R. Xiong, J. Shi, Electrospun nanofibers of p-type BiFeO 3/n-type TiO 2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941–31947 (2014)

    Article  ADS  Google Scholar 

  8. M. Naseri, E. Naderi, A.R. Sadrolhosseini, Effect of phase transformation on physical and biological properties of PVA/CaFe 2 O 4 nanocomposite. Fibers and Polym. 17, 1667–1674 (2016)

    Article  Google Scholar 

  9. M. Naseri, Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method. J. Magn. Magn. Mater. 392, 107–113 (2015)

    Article  ADS  Google Scholar 

  10. G.K. Rozenberg, M. Pasternak, W. Xu, L. Dubrovinsky, S. Carlson, R. Taylor, Consequences of pressure-instigated spin crossover in RFeO3 perovskites; a volume collapse with no symmetry modification. EPL (Europhysics Letters) 71, 228 (2005)

    Article  ADS  Google Scholar 

  11. Z. Liu, Y. Qi, C. Lu, High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. J. Mater. Sci.: Mater. Electron. 21, 380–384 (2010)

    ADS  Google Scholar 

  12. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212, 80–88 (2011)

    Article  Google Scholar 

  13. H. Rezaei-Vahidian, A. Reza Zarei, A.R. Soleymani, Degradation of nitro-aromatic explosives using recyclable magnetic photocatalyst: catalyst synthesis and process optimization. J. Hazard. Mater. 325, 310–318 (2016)

    Article  Google Scholar 

  14. A. Khalid, M. Saleem, S. Naseem, S.M. Ramay, H.M. Shaikh, S. Atiq, Magneto-electric coupling and multifunctionality in BiFeO3–CoFe2O4 core-shell nano-composites. Ceram. Int. 46, 12828–12836 (2020)

    Article  Google Scholar 

  15. J. Lee, Metastable iron (iii) oxide polymorphs derived from Fe/Mn bimetallic coordination polymer particles in confined space: SiO 2 shell effect on crystal phase transition. Cryst. Eng. Comm. 21, 2849–2853 (2019)

    Article  Google Scholar 

  16. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method. Mater. Res. Bull. 48, 1439–1446 (2013)

    Article  Google Scholar 

  17. Y. Liu, S. Ding, J. Xu, H. Zhang, S. Yang, X. Duan, H. Sun, S. Wang, Preparation of a pn heterojunction BiFeO3@ TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation. Chin. J. Catal. 38, 1052–1062 (2017)

    Article  Google Scholar 

  18. L. Gong, Z. Zhou, S. Wang, B. Wang, Preparation and characterization of BiFeO3@Ce-doped TiO2 core-shell structured nanocomposites. Mater. Sci. Semicond. Process. 16, 288–294 (2013)

    Article  Google Scholar 

  19. A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)

    Article  Google Scholar 

  20. W. Vallejo, A. Cantillo, C. Díaz-Uribe, Methylene blue photodegradation under visible irradiation on Ag-doped ZnO thin films. Int. J. Photoenergy 2020, 1–11 (2020)

    Article  Google Scholar 

  21. R. Prasannakumara, B. Shrisha, K.G. Naik, Synthesis of cobalt doped BiFeO3 multiferroic thin films on p-Si substrate by sol-gel method, in AIP Conference Proceedings. (AIP Publishing LLC, 2018), p. 030247

    Google Scholar 

  22. A.K. Sharma, R. Vyas, P.K. Jain, U. Chand, V.K. Jain, Optical properties of in-situ chemically synthesized PANI-TiO2 nanocomposites. J. Nano- & Electron. Phys. 11(2), 02012-1-02012–5 (2019)

    Article  Google Scholar 

  23. Y.C. Yang, Y. Liu, J.H. Wei, C.X. Pan, R. Xiong, J. Shi, Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941–31947 (2014)

    Article  ADS  Google Scholar 

  24. H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng, W. Tu, S. Wu, H.Y. Lee, Y.Z. Tan, J.W. Chew, Formation of quasi-core-shell In2S3/anatase TiO2@ metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B 233, 213–225 (2018)

    Article  Google Scholar 

  25. N. Ghows, M.H. Entezari, Fast and easy synthesis of core–shell nanocrystal (CdS/TiO2) at low temperature by micro-emulsion under ultrasound. Ultrason. Sonochem. 18, 629–634 (2011)

    Article  Google Scholar 

  26. Y. Bessekhouad, D. Robert, J. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol., A 163, 569–580 (2004)

    Article  Google Scholar 

  27. A.K. Ladavos, A.P. Katsoulidis, A. Iosifidis, K.S. Triantafyllidis, T.J. Pinnavaia, P.J. Pomonis, The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous Mesoporous Mater. 151, 126–133 (2012)

    Article  Google Scholar 

  28. Z. Chen, J. Wang, G. Zhai, R. He, X. Jia, Q. Sun, Y. Men, Bi2O3 quantum dots decorated TiO2nanobelt heterojunctions with enhanced visible-light photoactivity. Micro & Nano Lett. 13, 1734–1738 (2018)

    Article  Google Scholar 

  29. Z. Li, X. Xing, J. Zhang, M. Li, Q. Zhang, Highly ordered hierarchically macroporous-mesoporous TiO2 for thiol-ene polymer design by photoclick chemistry. Microporous and Mesoporous Mater. 291, 109696 (2020)

    Article  Google Scholar 

  30. M.K. Bhunia, S.K. Das, A. Dutta, A. Sengupta, A. Bhaumik, Fine dispersion of BiFeO3 nanocrystallites over highly ordered mesoporous silica material and its photocatalytic property. J. Nanosci. Nanotechnol. 13, 2557–2565 (2013)

    Article  Google Scholar 

  31. M.R. Kumar, G. Murugadoss, N. Venkatesh, P. Sakthivel, Synthesis of Ag2O-SnO2 and SnO2-Ag2O nanocomposites and investigation on photocatalytic performance under direct sun light. Chem. Select 5, 6946–6953 (2020)

    Google Scholar 

  32. K. Jahanara, S. Farhadi, A magnetically separable plate-like cadmium titanate–copper ferrite nanocomposite with enhanced visible-light photocatalytic degradation performance for organic contaminants. RSC Adv. 9, 15615–15628 (2019)

    Article  ADS  Google Scholar 

  33. Y. Xue, Z. Wu, X. He, X. Yang, X. Chen, Z. Gao, Constructing a Z-scheme heterojunction of egg-like core@ shell CdS@ TiO2 photocatalyst via a facile reflux method for enhanced photocatalytic performance. Nanomaterials 9, 222 (2019)

    Article  ADS  Google Scholar 

  34. F. Amano, M. Nakata, J.J.M. Vequizo, A. Yamakata, Enhanced visible light response of TiO2 codoped with Cr and Ta Photocatalysts by electron doping. ACS Appl. Energy Mater. 2(5), 3274–3284 (2019)

    Article  Google Scholar 

  35. S. Li, Y.-H. Lin, B.-P. Zhang, J.-F. Li, C.-W. Nan, BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. J. Appl. Phys. 105, 054310 (2009)

    Article  ADS  Google Scholar 

  36. Q. Zhao, X. Li, Y. Liu, A. Zhu, Visible-light driven generation of reactive radicals over BiFeO3/TiO2 nanotube array: experimental evidence and energetic mechanism. J. Nanopart. Res. 17, 304 (2015)

    Article  ADS  Google Scholar 

  37. S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903–2908 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Malayer University and Lorestan University for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Sarikhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarikhani, F., Naseri, M., Soleymani, A.R. et al. A comprehensive research on BiFeO3/TiO2 nanocomposite synthesized via thermal treatment/hydrolysis precipitation method. Appl. Phys. A 127, 708 (2021). https://doi.org/10.1007/s00339-021-04839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04839-5

Keywords

Navigation