Skip to main content
Log in

Cetyltrimethylammonium Bromide (CTAB) Surfactant-Assisted Synthesis of BiFeO3 Nanoparticles by Sol-Gel Auto-Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this research, BiFeO3 nanoparticles were synthesized by sol-gel auto-combustion method with and without the addition of cetyltrimethylammonium bromide (CTAB) surfactant. The effect of different amounts of CTAB addition (0, 1.5, 3, and 6 wt.%) on phase constituents, microstructure, and magnetic properties of the synthesized samples were evaluated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and vibration sample magnetometer (VSM). Also, BiFeO3 nanoparticles were used for the degradation of methylene blue (MB) as a typical dye pollutant under UV irradiation. XRD results showed the formation of BiFeO3 mainly with some minute impurity phases such as Bi2O3 and γ-Fe2O3. Proper amounts of CTAB addition (1.5 wt.%) considerably eliminates Bi2O3 and γ-Fe2O3 residuals in the combustion product. FESEM micrographs show particle size reduction and also more uniform particle size distribution when using 0.75 wt.% of CTAB addition. In the presence of the BiFeO3, the UV irradiation for 120 min resulted in 26% degradation of MB, in a sample with 0.75 wt.% CTAB. The synthesized nanoparticles of BiFeO3 in the sample with 0.75 wt.% CTAB after calcination at 650 C showed a weak ferromagnetism behavior with saturation magnetization of 0.54 emu/g. iHC values of the samples are in the range of 200 to 238 Oe, depending on the crystallite size and phase constituents of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu, J.H., Ke, H., Jia, D.C., Wang, W., Zhou, Y.: Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method. J. Alloys Compd. 472, 473–477 (2009)

    Article  Google Scholar 

  2. Xu, J.M., Wang, G.M., Wang, H.X., Ding, D.F., He, Y.: Synthesis and weak ferromagnetism of Dy-doped BiFeO3 powders. Mater. Lett. 63, 855–857 (2009)

    Article  Google Scholar 

  3. McDonnell, K.A., Wadnerkar, N., English, N.J., Rahman, M., Dowling, D.: Photo-active and optical properties of bismuth ferrite (BiFeO3): an experimental and theoretical study. Chem. Phys. Lett. 572, 78–84 (2013)

    Article  ADS  Google Scholar 

  4. Chen, C., Cheng, J., Yu, S., Che, L., Meng, Z.: Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 291, 135–139 (2006)

    Article  ADS  Google Scholar 

  5. Li, S., Lin, Y.H., Zhang, B.P., Nan, C.W., Wang, Y.: Photocatalytic and magnetic behaviors observed in nanostructured BiFeO3 particles. J. Appl. Phys. 105, 056105 (2009)

    Article  ADS  Google Scholar 

  6. Zhou, J.P., Yang, R.L., Xiao, R.J., Chen, X.M., Deng, C.Y.: Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method. Mater. Res. Bull. 47, 3630–3636 (2012)

    Article  Google Scholar 

  7. Shabani, S., Mirkazemi, S.M., Masoudpanah, S.M., Taheri Dolat Abadi, P.: Synthesis and characterization of pure single phase BiFeO3 nanoparticles by the glyoxylate precursor method. J. Supercond. Nov. Magn. 27, 2795–2801 (2014)

    Article  Google Scholar 

  8. Yang, X., Zhang, Y., Xu, G., Wei, X., Ren, Z., Shen, G., Han, G.: Phase and morphology evolution of bismuth ferrites via hydrothermal reaction route. Mater. Res. Bull. 48, 1694–1699 (2013)

    Article  Google Scholar 

  9. Vanga, P.R., Mangalaraja, R.V., Ashok, M.: Structural, magnetic and photocatalytic properties of La and alkaline co-doped BiFeO3 nanoparticles. Mater. Sci. Semicond. Process. 40, 796–802 (2015)

    Article  Google Scholar 

  10. Zhang, X., Lv, J., Bourgeois, L., Cui, J., Wu, Y., Wang, H., Webley, P.A.: Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New J. Chem. 35, 937–941 (2011)

    Article  Google Scholar 

  11. Vanga, P.R., Mangalaraja, R.V., Ashok, M.: Effect of co-doping on the optical, magnetic and photocatalytic properties of the Gd modified BiFeO3. J. Mater. Sci: Mater. Electron. 27, 5699–5706 (2016)

    Google Scholar 

  12. Ke, H., Wang, W., Wang, Y., Xu, J., Jia, D., Lu, Z., Zhou, Y.: Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J. Alloys Compd. 509, 2192–2197 (2011)

    Article  Google Scholar 

  13. Das, N., Majumdar, R., Sen, A., Maiti, H.S.: Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater. Lett. 61(10), 2100–2104 (2007)

    Article  Google Scholar 

  14. Masoudpanah, S.M., Mirkazemi, S.M., Shabani, S., Taheri Dolat Abadi, P.: The effect of the ethyleneglycol to metal nitrate molar ratio on the phase evolution, morphology and magnetic properties of single phase BiFeO3 nanoparticles. Ceram. Int. 41, 9642–9646 (2015)

    Article  Google Scholar 

  15. Ghosh, S., Dasgupta, S., Sen, A., Sekhar, H.: Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J. Am. Ceram. Soc. 88, 1349 (2005)

    Article  Google Scholar 

  16. Godara, S., Sinhaa, N., Raya, G., Kumar, B.: Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. J. Asian Ceram. Soc. 2, 416–421 (2014)

    Article  Google Scholar 

  17. Ramdas, B., Khomane, A.S., Prakash, K., Ramesha, M.: Sathiya: CTAB-assisted sol–gel synthesis of Li4Ti5O12 and its performance as anode material for Li-ion batteries. Mater. Res. Bull. 46, 1139–1142 (2011)

    Article  Google Scholar 

  18. Mirkazemi, S.M., Alamolhoda, S., Ghiami, Z.: Microstructure and magnetic properties of SrFe12O19 nano-sized powders prepared by sol-gel auto-combustion method with CTAB surfactant. J. Supercond. Nov. Magn. 28, 1543–1549 (2015)

    Article  Google Scholar 

  19. Carvalho, T.T., Tavares, P.B.: Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater. Lett. 62, 3984–3986 (2008)

    Article  Google Scholar 

  20. Silambarasan, P., Vairavel, M., Ramesh Kumar, G., Gokul Raj, S.: Effect of fuel on phase formation of nanocrystalline bismuth ferrite (BiFeO3). Mater. Today: Proceedings 2, 1923–1926 (2015)

    Article  Google Scholar 

  21. Zhao, Y., Miao, J., Zhang, X., Chen, Y., Xu, X.G., Jiang, Y.: Ultra-thin BiFeO3 nanowires prepared by a sol–gel combustion method: an investigation of its multiferroic and optical properties. J. Mater. Sci.: Mater. Electron. 23, 180–184 (2012)

    Google Scholar 

  22. Upadhyay, R.K., Pan, S., Barman, A., Mc Laughlin, J.A., SinhaRoy, S.: Oil swollen surfactant gel based synthesis of metal oxides nanoparticles: an attractive alternative for the conventional sol gel synthesis. Ceram. Int. 42, 12119–12128 (2016)

    Article  Google Scholar 

  23. Hardy, A., Gielis, S., Van den Rul, H., D’Haen, J., Van Bael, M.K., Mullens, J.: Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. J. Eur. Ceram. Soc. 29, 3007–3013 (2009)

    Article  Google Scholar 

  24. George, M., Johna, A.M., Naira, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)

    Article  ADS  Google Scholar 

  25. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.: Synthesis, studies and growth mechanism of ferromagnetic NiFe2O4 nanosheet. Appl. S.rf. Sci. 258, 6648–6652 (2012)

    Article  ADS  Google Scholar 

  26. Ghosh, S., Dasgupta, S., Sen, A., Maiti, H.S.: Effect of fuel on phase formation of nanocrystalline bismuth ferrite (BiFeO3). Mater. Res. Bull. 40, 2073–2079 (2005)

    Article  Google Scholar 

  27. Medernach, J.W., Snyder, R.L.: Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J. Am. Ceram. Soc. 61, 494–497 (1978)

    Article  Google Scholar 

  28. Wang, Z., Li, X., Feng, Z.: The effect of CTAB on the citrate sol-gel process for the synthesis of sodium beta-alumina nano-powders. Bull. Korean Chem. Soc. 32, 1310–1314 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ghobeiti Hasab, M., Seyyed Ebrahimi, S.A., Badiei, A.: Comparison of the effects of cationic, anionic and nonionic surfactants on the properties of Sr-hexaferrite nanopowder synthesized by a sol–gel auto-combustion method. J. Magn. Magn. Mater. 316, e13–e15 (2007)

    Article  ADS  Google Scholar 

  30. Liu, J.L., Chen, X.L., Wang, S.Y., Yan, L.M., Zhang, M.: Synthesis and properties of strontium hexa-ferrite ultrafine powders via a CTAB-assisted co-precipitation method. Rare Met. 36, 666–670 (2017)

    Article  Google Scholar 

  31. Jia, D.C., Xu, J.H., Ke, H., Wang, W., Zhou, Y.: Structure and multiferroic properties of BiFeO3 powders. J. Eur. Ceram. Soc. 29, 3099–3103 (2009)

    Article  Google Scholar 

  32. Pillai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  ADS  Google Scholar 

  33. Jain, S.R., Adiga, K.C., PaiVernecker, V.R.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71–79 (1981)

    Article  Google Scholar 

  34. Alamolhoda, S., Mirkazemi, S.M., Shahjooyi, T., Benvidi, N.: Effect of cetyltrimethylammonium bromide (CTAB) amount on phase constituents and magnetic properties of nano-sized NiFe2O4 powders synthesized by sol–gel auto-combustion method. J. Alloys Compd. 638, 121–126 (2015)

    Article  Google Scholar 

  35. Zhong, J., Li, J., Xiao, Z., Hu, W., Zhou, X., Zheng, X.: Improved photocatalytic performance of ZnO prepared by sol–gel method with the assistance of CTAB. Mater. Lett. 91, 301–303 (2013)

    Article  Google Scholar 

  36. Yin, S., Shinozaki, M., Sato, T.: Synthesis and characterization of wire-like and near-spherical Eu2O3-doped Y2O3 phosphors by solvothermal reaction. J. Lumin 126, 427–433 (2007)

    Article  Google Scholar 

  37. Rajendran, R., Muralidharan, R., Gopalakrishnan, R.S., Chellamuthu, M., Ponnusamy, S.U., Manikandan, E.: Controllable synthesis of single-crystalline Fe3O4 nanorice by a one-pot, surfactant-assisted hydrothermal method and its properties. Eur. J. Inorg. Chem. 2011, 5384–5389 (2011)

    Article  Google Scholar 

  38. Zhang, L., He, R., Gu, H.C.: Synthesis and kinetic shape and size evolution of magnetite nanoparticles. Mater. Res. Bull. 41, 260–267 (2006)

    Article  Google Scholar 

  39. Puntes, V.F., Zanchet, D., Erdonmez, C.K., Paul Alivisatos, A.: Synthesis of hcp-Co nanodisks. J. Am. Chem. Soc. 124, 12874–12880 (2002)

    Article  Google Scholar 

  40. Kumar, A., Rai, R.C., Podraza, N.J., Denev, S., Ramirez, M., Chu, Y.H., Martin, L.W., Ihlefeld, J., Heeg, T., Schubert, J., Schlom, D.G., Orenstein, J., Ramesh, R., Collins, R.W., Musfeldt, J.L., Gopalan, V.: Linear and nonlinear optical properties of BiFeO3. Appl. Phys. Lett. 92, 121915 (2008)

    Article  ADS  Google Scholar 

  41. Yang, J., Li, X., Zhou, J., Tang, Y., Zhang, Y., Li, Y.: Factors controlling pure-phase magnetic BiFeO3 powders synthesized by solution combustion synthesis. J. Alloys Compd. 509, 9271–9277 (2011)

    Article  Google Scholar 

  42. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. IEEE Press & Wiley, New Jersey (2009)

    Google Scholar 

  43. Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn. Addison-Wesley, Reading (1978)

    Google Scholar 

  44. Zhang, M., Yang, H., Xian, T., Wei, Z.Q., Jiang, J.L., Feng, Y.C., Liu, X.Q.: Polyacrylamide gel synthesis and photocatalytic performance of Bi2Fe4O9 nanoparticles. J. Alloys Compd. 509, 809–812 (2011)

    Article  Google Scholar 

  45. Arya, G.S., Negi, N.S.: Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D: Appl. Phys. 46, 095004 (2013)

    Article  ADS  Google Scholar 

  46. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475–3518 (1991)

    Article  ADS  Google Scholar 

  47. Xiang, J., Zhou, G., Shen, X., Chu, Y., Guo, Y.: Effect of Bi2O3 addition on structure and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibers. J. Sol-Gel Sci. Technol. 62, 186–192 (2012)

    Article  Google Scholar 

  48. Irfan, S., Rizwan, S., Shen, Y., Li, L., Asfandiyar, Butt, S., Nan, C.W.: The gadolinium (Gd3+) and tin (Sn4+) co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci. Rep. 7, 42493 (2017)

    Article  ADS  Google Scholar 

  49. Soltani, T., Entezari, M.H.: Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J. Mol. Catal. A:Chem. 377, 197–203 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alamolhoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, P., Alamolhoda, S. & Mirkazemi, S.M. Cetyltrimethylammonium Bromide (CTAB) Surfactant-Assisted Synthesis of BiFeO3 Nanoparticles by Sol-Gel Auto-Combustion Method. J Supercond Nov Magn 31, 3307–3314 (2018). https://doi.org/10.1007/s10948-018-4596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4596-9

Keywords

Navigation