Skip to main content
Log in

Enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrites with Bi2O3–NiO additive

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2O3 significantly influences the grain growth of LiZn ferrite ceramics, whereas NiO enhances the performance of LiZn ferrites. Herein, we present the influence of Bi2O3–NiO addition on solid-state synthesis, microstructure, density and ferromagnetic performance of LiZnTiMn ferrites at low temperatures (< 960 °C). The results reveal that an optimal amount of Bi2O3–NiO endows excellent properties to LiZnTiMn ferrites after sintering at 950 °C. X-ray diffraction and scanning electron microscopy demonstrate superior densification and grain growth due to the incorporation of Bi2O3–NiO. Moreover, the corresponding ferromagnetic properties, such as saturation induction (Bs), remanence square ratio, coercivity (Hc), ferromagnetic resonance line width (ΔH) and Ms, are also investigated to demonstrate variation. At being sintered at 950 °C with Bi2O3–NiO content of 0.25 wt%, the name rendered a Bs value of 334 mT, Br/Bs ratio of 0.877, Hc of 130 Oe and ΔH of 177 Oe. These results confirm that the presence of Bi2O3–NiO lowers the firing temperature of LiZnTiMn ferrites and endows superior magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.G. Harris, Modern microwave ferrites. IEEE Trans. Magn. 48, 1075–1104 (2012)

    Article  CAS  Google Scholar 

  2. L. Jia, Y. Zhao, F. Xie, Q. Li, Y. Li, C. Liu, H. Zhang, Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application. AIP Adv. 6, 056214 (2016)

    Article  Google Scholar 

  3. E. Marsan, J. Gauthier, M. Chaker, K. Wu, Tunable microwave device: status and perspective, in Proceedings of the 3rd International IEEE-NEWCAS Conference. (IEEE, Quebec City, 2005), pp. 279–282

    Google Scholar 

  4. V.K. Palukuru, J. Peräntie, J. Jäntti, H. Jantunen, Tunable microwave phase shifters using LTCC technology with integrated BST thick films. Int. J. Appl. Ceram. Technol. 9, 11–17 (2012)

    Article  CAS  Google Scholar 

  5. F.A. Ghaffar, A. Shamim, A partially magnetized ferrite LTCC-based SIW phase, shifter for phased array applications. IEEE Trans. Magn. 51, 8 (2015)

    Article  Google Scholar 

  6. C. Liu, Y. Guo, X. Bao, S. Xiao, 60-GHz LTCC integrated circularly polarized helical antenna array. IEEE Trans. Antennas Propag. 60, 1335 (2012)

    Google Scholar 

  7. A. Nafe, A. Shamim, An integrable SIW phase shifter in a partially magnetized ferrite LTCC package. IEEE Trans. Microw. Theory Tech. 63, 2274 (2015)

    Article  Google Scholar 

  8. C.C. Li, X.Y. Wei, L. Fang, H.X. Yan, M.J. Reece, Dielectric relaxation and electrical conductivity in Ca5Nb4TiO17 ceramics. Ceram. Int. 41, 9923–9930 (2015)

    Article  CAS  Google Scholar 

  9. D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, I.M. Reaney, Novel temperature stable high-epsilon(r) microwave dielectrics in the Bi2O3–TiO2–V2O5 system. J. Mater. Chem. C. 4, 5357–5362 (2016)

    Article  CAS  Google Scholar 

  10. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, BiVO4 based high k microwave dielectric materials: a review. J. Mater. Chem. C. 6, 9290–9313 (2018)

    Article  CAS  Google Scholar 

  11. J.H. Jean, C.H. Lee, Processing and properties of low-fire Ni–Cu–Zn ferrite with V2O5. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 40, 2232–2236 (2001)

    Article  CAS  Google Scholar 

  12. C.Y. Liu, Z.W. Lan, X.N. Jiang, Z. Yu, K. Sun, L.Z. Li, P.Y. Liu, Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 320, 1335–1339 (2008)

    Article  CAS  Google Scholar 

  13. T.C. Zhou, H.W. Zhang, L.J. Jia, J. Li, Y.L. Liao, L.C. Jin, H. Su, Grain growth, densification, and gyromagnetic properties of LiZnTi ferrites with H3BO3–Bi2O3–SiO2–ZnO glass addition. J. Appl. Phys. 115, 3 (2014)

    Google Scholar 

  14. F. Xu, H.W. Zhang, F. Xie, Y.L. Liao, Y.X. Li, J. Li, L.C. Jin, Y. Yang, G.W. Gan, G. Wang, Q. Zhao, Investigation of grain boundary diffusion and grain growth of lithium zinc ferrites with low activation energy. J. Am. Ceram. Soc. 101, 5037–5045 (2018)

    Article  CAS  Google Scholar 

  15. R. Guo, Z. Yu, Y. Yang, X. Jiang, K. Sun, C. Wu, Z. Xu, Z. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloy. Comp. 589, 1–4 (2014)

    Article  CAS  Google Scholar 

  16. F. Xu, Y. Liao, D. Zhang, T. Zhou, J. Li, G. Gan, H. Zhang, Synthesis of highly uniform and compact lithium zinc ferrite ceramics via an efficient low temperature approach. Inorg. Chem. 56, 4512–4520 (2017)

    Article  Google Scholar 

  17. F. Xie, L.J. Jia, F. Xu, G.W. Gan, J. Li, Y.L. Li, Y.X. Li, H.W. Zhang, Low-temperature sintering LiZnTiMn ferrite ceramics: synthesis, microstructure, and enhanced ferromagnetic properties with CuO–V2O5 additive. J. Mater. Sci. Mater. Electron. 29, 13337–13344 (2018)

    Article  CAS  Google Scholar 

  18. T.C. Zhou, H.W. Zhang, L.J. Jia, Y.L. Liao, Z.Y. Zhong, F.M. Bai, H. Su, J. Li, L.C. Jin, C. Liu, Enhanced ferromagnetic properties of low temperature sintering LiZnTi ferrites with Li2O–B2O3–SiO2–CaO–Al2O3 glass addition. J. Alloy. Compd. 620, 421–426 (2015)

    Article  CAS  Google Scholar 

  19. D.N. Zhang, X.Y. Wang, F. Xu, J. Li, T.C. Zhou, L.J. Jia, H.W. Zhang, Y.L. Liao, Low temperature sintering and ferromagnetic properties of Li0.43Zn0.27Ti0.13Fe2.17O4 ferrites doped with BaO–ZnO–B2O3–SiO2 glass. J. Alloy. Compd. 654, 140–145 (2016)

    Article  CAS  Google Scholar 

  20. Z. Yu, D. Chen, Z. Lan, X. Jiang, B. Liu, Effect of Bi2O3 on properties of Lithium-Zinc ferrite. J. Inorg. Mater. 22(6), 1173e1177 (2007)

    Google Scholar 

  21. Y. Yang, J. Li, H. Zhang, L. Jin, F. Xu, G. Gan, G. Wang, D. Wen, Enhanced gyromagnetic properties of NiCuZn ferrite ceramics for LTCC applications by adjusting MnO2–Bi2O3 substitution. Ceram. Int. 44, 19370–19376 (2018)

    Article  CAS  Google Scholar 

  22. H. Su, X. Tang, H. Zhang, Z. Zhong, J. Shen, Sintering dense NiZn ferrite by two-step sintering process. J Appl Phys 109, 07A501 (2011)

    Article  Google Scholar 

  23. X.N. Jiang, Z.W. Lan, Z. Yu, Y.M. Zhuang, P.Y. Liu, Effects of Mn3O4 on magnetic property, microstructure and resistivity of LiZn ferrites. J. Inorg. Mater. 25, 77–82 (2010)

    Article  CAS  Google Scholar 

  24. M. Kavanloui, B. Hashemi, Effect of B2O3 on the densification and magnetic properties of Li–Zn ferrite. Mater. Des. 32, 4257–4261 (2011)

    Article  CAS  Google Scholar 

  25. R.D. Guo, Z. Yu, Y. Yang, X.N. Jiang, K. Sun, C.J. Wu, Z.Y. Xu, Z.W. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloy. Compd. 589, 1–4 (2014)

    Article  CAS  Google Scholar 

  26. F. Xie, L.J. Jia, Y.P. Zhao, J. Li, T.C. Zhou, Y.L. Liao, H.W. Zhang, Low-temperature sintering and ferrimagnetic properties of LiZnTiMn ferrites with Bi2O3–CuO eutectic mixture. J. Alloy. Compd. 695, 3233–3238 (2017)

    Article  CAS  Google Scholar 

  27. Y.J. Chen, M.J. Nedoroscik, A.L. Geiler, C. Vittoria, V.G. Harris, Perpendicularly oriented polycrystalline BaFe11.1Sc0.9O19 hexaferrite with narrow FMR linewidths. J. Am. Ceram. Soc. 91, 2952–2956 (2008)

    Article  CAS  Google Scholar 

  28. Y.L. Liao, F. Xu, D.N. Zhang, J. Li, T.C. Zhou, X.Y. Wang, L.J. Jia, Y.X. Li, H.W. Zhang, Magnetic properties and microstructure of low temperature sintered LiZnMnTi ferrites doped with Li2CO3–B2O3–Bi2O3–SiO2 glasses. J. Alloy. Compd. 680, 729–734 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research and Development Program of China (Grant Nos. 2017YFA0207400, 2016YFA0300801), China National Natural Science Foundation of China (Grant No. 61671118, 61734002 and 61971094), Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents, and Fundamental Research Funds for the Central Universities (Grant No. ZYGX2018J030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T., Li, J., Wang, X. et al. Enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrites with Bi2O3–NiO additive. J Mater Sci: Mater Electron 32, 25887–25894 (2021). https://doi.org/10.1007/s10854-020-05163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05163-z

Navigation