Skip to main content
Log in

A facile sol–gel spin-coating fabrication of Ni@WO3 thin films and highly rectifying p-Si/n-Ni@WO3 heterojunction for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The WO3 thin films and p-Si/n-Ni@WO3 junction diodes are prepared with different wt% of Ni. The XRD profiles confirm that the monoclinic crystal system with a preferential orientation of (0 2 0) plane, in which their crystallite size is reduced from 28 to 14 nm with the rise of Ni content in WO3. From SEM images, the randomly arranged plate-like grain structure was observed for grown films and grain size reduces with an increase in Ni dopant concentration. The expected elements of Ni, W, and O are confirmed by the EDX spectrum and their ratio of composition was obtained. The UV–Vis-NIR spectra reveal that the 4 wt% of Ni@WO3 film exhibits a higher transmittance (~ 80%) with a low bandgap (Eg = 2.84 eV) value. The d.c. electrical conductivity increased with an increase in temperature for each Ni-doped WO3 films. The device ideality factor (n) and barrier height (ΦB) values were found to be decreased with a rise in Ni doping concentration. The better performance of the fabricated diode is observed p-Si/n-4 wt% of Ni@WO3 heterojunction diode with n = 1.820 and ΦB = 0.759 eV values. The obtained results suggest that the p-Si/n-Ni@WO3 diode is more suitable for optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, X. Huang, Preparation and luminescent properties of (Ca1-x, Srx)S:Eu2+ red-emitting phosphor for white LED. J. Lumin. 111, 139–145 (2005)

    Article  CAS  Google Scholar 

  2. X. Yan, W. Li, K. Sun, Preparation and luminescent properties of a novel red-emitting phosphor of Ca1−2xMxIn2O4:xEu3+ (M=Li, Na, K) for white LED solid-state lighting. J. Alloys Compd. 508, 475–479 (2010)

    Article  CAS  Google Scholar 

  3. J. Jiang, Z. Xu, J. Lin, G.L. Liu, Lithography-free, low-cost method for improving photodiode performance by etching silicon nanocones as antireflection layer. J. Sens. 2016, 4019864 (2016)

    Article  Google Scholar 

  4. N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, High-efficiency NiO/ZnO heterojunction UV photodiode by sol-gel processing. J. Mater. Chem. C 1, 7333–7338 (2013)

    Article  CAS  Google Scholar 

  5. W.Y. Weng, S.J. Chang, C.L. Hsu, T.J. Hsueh, S.P. Chang, A lateral ZnO nanowire photodetector prepared on glass substrate. J. Electrochem. Soc. 157, K30 (2010)

    Article  CAS  Google Scholar 

  6. W.Y. Weng, S.J. Chang, C.L. Hsu, T.J. Hsueh, A ZnO-nanowire phototransistor prepared on glass substrates. ACS Appl. Mater. Interfaces 3, 162–166 (2011)

    Article  CAS  Google Scholar 

  7. T. Han, M. Shou, L. Liu, Z. Xie, L. Ying, C. Jiang, H. Wang, M. Yao, H. Deng, G. Jin, J. Chen, Y. Ma, Ultrahigh photosensitive organic phototransistors by photoelectric dual control. J. Mater. Chem. C 7, 4725–4732 (2019)

    Article  CAS  Google Scholar 

  8. S. Jiao, Z. Zhang, Y. Lu, D. Shen, B. Yao, J. Zhang, B. Li, D. Zhao, X. Fan, Z. Tang, ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett. 88, 031911 (2006)

    Article  Google Scholar 

  9. J. Um, S.E. Kim, Homo-junction pn diode using p-type SnO and n-type SnO2 thin films. ECS Solid State Lett. 3, P94–P98 (2014)

    Article  CAS  Google Scholar 

  10. Y. Liu, J. Yu, P.T. Lai, Investigation of WO3/ZnO thin-film heterojunction-based Schottky diodes for H2 gas sensing. Int. J. Hydrog. Energy 39, 10313–10319 (2014)

    Article  CAS  Google Scholar 

  11. B. Choudhuri, A. Mondal, S.M.M.D. Dwivedi, M. Henini, Fabrication of novel transparent Co3O4-TiO2 nanowires p-n heterojunction diodes for multiband photodetection applications. J. Alloys Compd. 712, 7–14 (2017)

    Article  CAS  Google Scholar 

  12. Y. Kokubun, S. Kubo, S. Nakagomi, All-oxide p–n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3. Appl. Phys. Express 9, 091101 (2016)

    Article  Google Scholar 

  13. S. Bai, H. Chu, X. Xiang, R. Luo, J. He, A. Chen, Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting. Chem. Eng. J. 350, 148–156 (2018)

    Article  CAS  Google Scholar 

  14. J.-W. Kim, S.J. Lee, P. Biswas, T.I. Lee, J.-M. Myoung, Solution-processed n-ZnO nanorod/p-Co3O4 nanoplate heterojunction light-emitting diode. Appl. Surf. Sci. 406, 192–198 (2017)

    Article  CAS  Google Scholar 

  15. J. Zhang, Z. Liu, Z. Liu, Novel WO3/Sb2S3 Heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8, 9684–9691 (2016)

    Article  CAS  Google Scholar 

  16. V.R. Buch, A.K. Chawla, S.K. Rawal, Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today: Proc. 3, 1429–1437 (2016)

    Google Scholar 

  17. S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787 (2011)

    Article  CAS  Google Scholar 

  18. J. Ham, S. Kim, G.H. Jung, W.J. Dong, J.-L. Lee, Design of broadband transparent electrodes for flexible organic solar cells. J. Mater. Chem. A 1, 3076–3082 (2013)

    Article  CAS  Google Scholar 

  19. K.-W. Kim, Y.M. Kim, X. Li, T. Ha, S.H. Kim, H.C. Moon, S.W. Lee, Various coating methodologies of WO3 according to the purpose for electrochromic devices. Nanomaterials 10, 821 (2020)

    Article  CAS  Google Scholar 

  20. L. Gao, X. Wang, Z. Xie, W. Song, L. Wang, X. Wu, F. Qu, D. Chen, G. Shen, High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013)

    Article  CAS  Google Scholar 

  21. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Investigation of microstructural, optical and dc electrical properties of spin coated Al:WO3 thin films for n-Al:WO3/p-Si heterojunction diodes. Optik 145, 169–180 (2017)

    Article  CAS  Google Scholar 

  22. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, R. Marnadu, Influence of metal (M = Cd, In, and Sn) dopants on the properties of spin-coated WO3 thin films and fabrication of temperature-dependent heterojunction diodes. J. Sol-Gel. Sci. Technol. 93, 495–505 (2020)

    Article  CAS  Google Scholar 

  23. W. Li, F. Zhan, J. Li, C. Liu, Y. Yang, Y. Li, Q. Chen, Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes. Electrochim. Acta 160, 57–63 (2015)

    Article  CAS  Google Scholar 

  24. M.A. Ouis, M.A. Azooz, H.A. ElBatal, Optical and infrared spectral investigations of cadmium zinc phosphate glasses doped with WO3 or MoO3 before and after subjecting to gamma irradiation. J. Non-Cryst. Solids 494, 31–39 (2018)

    Article  CAS  Google Scholar 

  25. S.B. Upadhyay, R.K. Mishra, P.P. Sahay, Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping. Sens. Actuators B 209, 368–376 (2015)

    Article  CAS  Google Scholar 

  26. S.S. Kalanur, Structural, optical, band edge and enhanced photoelectrochemical water splitting properties of tin-doped WO3. Catalysts 9, 456 (2019)

    Article  CAS  Google Scholar 

  27. Y.-H. Xiao, C.-Q. Xu, W.-D. Zhang, Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting. J. Solid State Electrochem. 21, 3355–3364 (2017)

    Article  CAS  Google Scholar 

  28. J. Kaur, K. Anand, A. Kaur, R.C. Singh, Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens. Actuators B 258, 1022–1035 (2018)

    Article  CAS  Google Scholar 

  29. A.K. Hassan, G.M. Ali, Dark current analysis of p-i-n NiO/BiTiO3/ZnO thin film heterojunction diode. IOP Conf. Ser.: Mater. Sci. Eng. 870, 012121 (2020)

    Article  CAS  Google Scholar 

  30. F. Mehmood, J. Iqbal, M. Ismail, A. Mehmood, Ni doped WO3 nanoplates: an excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J. Alloys Compd. 746, 729–738 (2018)

    Article  CAS  Google Scholar 

  31. A.A. Dakhel, H. Ashoor, Synthesis of semiferromagnetic Ni-doped WO3 nanoparticles by precipitation method: Evaluation of effect of treatment in hydrogen gas. Mater. Chem. Phys. 230, 172–177 (2019)

    Article  CAS  Google Scholar 

  32. H.T.T. Nguyen, T.H. Truong, T.D. Nguyen, V.T. Dang, T.V. Vu, S.T. Nguyen, X.P. Cu, T.T.O. Nguyen, Ni-doped WO3 flakes-based sensor for fast and selective detection of H2S. J. Mater. Sci.: Mater. Electron. 31, 12783–12795 (2020)

    CAS  Google Scholar 

  33. K. Santhi, C. Rani, S. Karuppuchamy, Degradation of Alizarin red S dye using Ni doped WO3 photocatalyst. J. Mater. Sci.: Mater. Electron. 27, 5033–5038 (2016)

    CAS  Google Scholar 

  34. T. Vilic, E. Llobet, Nickel doped WO3 nanoneedles deposited by a single step AACVD for gas sensing applications. Proced. Eng. 168, 206–210 (2016)

    Article  CAS  Google Scholar 

  35. P. Sivakarthik, V. Thangaraj, M. Parthibavarman, A facile and one-pot synthesis of pure and transition metals (M= Co & Ni) doped WO3 nanoparticles for enhanced photocatalytic performance. J. Mater. Sci.: Mater. Electron. 28, 5990–5996 (2017)

    CAS  Google Scholar 

  36. S. Chen, L. Zeng, H. Tian, X. Li, J. Gong, Enhanced lattice oxygen reactivity over Ni-modified WO3-based redox catalysts for chemical looping partial oxidation of methane. ACS Catal. 7, 3548–3559 (2017)

    Article  CAS  Google Scholar 

  37. J. Zhou, Y. Wei, G. Luo, J. Zheng, C. Xu, Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J. Mater. Chem. C 4, 1613–1622 (2016)

    Article  CAS  Google Scholar 

  38. S. Ramkumar, G. Rajarajan, A comparative study of humidity sensing and photocatalytic applications of pure and nickel (Ni)-doped WO3 thin films. Appl. Phys. A 123, 401 (2017)

    Article  Google Scholar 

  39. M.M. El-Nahass, M.M. Saadeldin, H.A.M. Ali, M. Zaghllol, Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique. Mater. Sci. Semicond. Process. 29, 201–205 (2015)

    Article  CAS  Google Scholar 

  40. S. Ashraf, C.S. Blackman, S.C. Naisbitt, I.P. Parkin, The gas-sensing properties of WO3−xthin films deposited via the atmospheric pressure chemical vapour deposition (APCVD) of WCl6 with ethanol. Meas. Sci. Technol. 19, 025203 (2008)

    Article  Google Scholar 

  41. P. Gao, H. Ji, Y. Zhou, X. Li, Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method. Thin Solid Films 520, 3100–3106 (2012)

    Article  CAS  Google Scholar 

  42. S. Poongodi, P.S. Kumar, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, C. Lee, Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. J. Alloys Compd. 719, 71–81 (2017)

    Article  CAS  Google Scholar 

  43. S. Bhuvaneswari, M. Seetha, J. Chandrasekaran, R. Marnadu, High photoresponsive p-Si/n-In2O3 junction diodes with low ideality factor prepared using closely packed octahedral structured In2O3 thin films. J. Inorg. Organomet. Polym. Mater. 30, 4552–4568 (2020)

    Article  CAS  Google Scholar 

  44. A.K. Nayak, R. Ghosh, S. Santra, P.K. Guha, D. Pradhan, Hierarchical nanostructured WO3–SnO2 for selective sensing of volatile organic compounds. Nanoscale 7, 12460–12473 (2015)

    Article  CAS  Google Scholar 

  45. S.K. Kannan, P. Thirnavukkarasu, R. Jayaprakash, J. Chandrasekaran, V. Mohanraj, Transition of nanocrystalline In(OH)3 as spherical indium oxide nanoparticles embedded platelets. Mater. Sci. Semicond. Process. 50, 31–35 (2016)

    Article  CAS  Google Scholar 

  46. B. Cullity, S. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001).

    Google Scholar 

  47. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, M. Wahab, Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047–2049 (2009)

    Article  CAS  Google Scholar 

  48. M. Shkir, M. Anis, S.S. Shaikh, M.S. Hamdy, S. AlFaify, Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics. Appl. Phys. B 126, 121 (2020)

    Article  CAS  Google Scholar 

  49. K.H. Ng, L.J. Minggu, M.B. Kassim, Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting. Int. J. Hydrog. Energy 38, 9585–9591 (2013)

    Article  CAS  Google Scholar 

  50. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, S. AlFaify, A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicond. Process. 107, 104807 (2020)

    Article  CAS  Google Scholar 

  51. M. Shkir, M.T. Khan, A. Khan, A.M. El-Toni, A. Aldalbahi, S. AlFaify, Facilely synthesized Cu:PbS nanoparticles and their structural, morphological, optical, dielectric and electrical studies for optoelectronic applications. Mater. Sci. Semicond. Process. 96, 16–23 (2019)

    Article  CAS  Google Scholar 

  52. M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Impact of annealing treatment on structural and dc electrical properties of spin coated tungsten trioxide thin films for Si/WO3/Ag junction diode. Mater. Sci. Semicond. Process. 56, 145–154 (2016)

    Article  CAS  Google Scholar 

  53. I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R160 (1986)

    Article  CAS  Google Scholar 

  54. M. Bordbar, B. Khodadadi, N. Mollatayefe, F.A. Yeganeh, Influence of metal (Ag, Cd, Cu)-doping on the optical properties of ZnO nanopowder: variation of band gap. J. Appl. Chem. 8, 43–47 (2013)

    Google Scholar 

  55. K.-R. Lee, J.-H. Lee, H.-I. Yoo, Grain size effect on the electrical properties of nanocrystalline ceria. J. Eur. Ceram. Soc. 34, 2363–2370 (2014)

    Article  CAS  Google Scholar 

  56. R. Mukherjee, A. Kushwaha, P. Sahay, Spray-deposited nanocrystalline WO3 thin films prepared using tungsten hexachloride dissolved in NN dimethylformamide and influence of in doping on their structural, optical and electrical properties. Electron. Mater. Lett. 10, 401–410 (2014)

    Article  CAS  Google Scholar 

  57. D. Look, B. Claflin, Progress in compound semiconductor materials IV-electronic and optoelectronic applications. Mater. Res. Soc. Symp. Proc. 829, B8 (2005)

    Google Scholar 

  58. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, P. Balraju, Zirconia modified nanostructured MoO3 thin films deposited by spray pyrolysis technique for Cu/MoO3–ZrO2/p-Si structured Schottky barrier diode application. Optik 199, 163351 (2019)

    Article  CAS  Google Scholar 

  59. O. Pakma, N. Serin, T. Serin, Ş Altındal, The effects of preparation temperature on the main electrical parameters of Al/TiO2/p-Si (MIS) structures by using sol–gel method. J. Sol-Gel Sci. Technol. 50, 28–34 (2009)

    Article  CAS  Google Scholar 

  60. A. Tataroğlu, Ş Altındal, The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature (I–V–T) measurements. J. Alloys Compd. 479, 893–897 (2009)

    Article  Google Scholar 

  61. O. Pakma, N. Serin, T. Serin, Ş Altındal, The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures. J. Appl. Phys. 104, 014501 (2008)

    Article  Google Scholar 

  62. M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J. Bernede, B. El Idrissi, Electrical and optical properties of WO3 thin films. Thin Solid Films 397, 238–243 (2001)

    Article  CAS  Google Scholar 

  63. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Science and Technology-Science and Engineering Research Board, Government of India, for the major research project (EMR/2016/007874). Author M. Shkir from KKU would like to express his gratitude to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P 2/95/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M., Chandrasekaran, J., Nguyen, T.D. et al. A facile sol–gel spin-coating fabrication of Ni@WO3 thin films and highly rectifying p-Si/n-Ni@WO3 heterojunction for optoelectronic applications. J Mater Sci: Mater Electron 32, 1582–1592 (2021). https://doi.org/10.1007/s10854-020-04927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04927-x

Navigation