Skip to main content
Log in

High Photoresponsive p-Si/n-In2O3 Junction Diodes with Low Ideality Factor Prepared Using Closely Packed Octahedral Structured In2O3 Thin Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Octahedral indium oxide thin films with different precursor concentrations of 0.05, 0.075, 0.1 and 0.125 M were coated on glass substrates at 450 °C using jet nebulizer spray pyrolysis technique. Surface morphology of the prepared samples showed closely packed octahedrons for all concentrations. The measured root-mean-square value of the films was varied between 40.45 and 188.98 nm with increased precursor concentrations. From optical analysis, the calculated optical band gap was continuously decreased with increase in precursor concentrations. A slight blue shift was recorded through the PL spectrum while increasing the precursor concentration due to the oxygen vacancies. The nature of electrical conductivity of the In2O3 films was analysed. Interestingly, we have calculated two types of activation energies in the In2O3 films one is corresponding to low temperature and another is higher temperature. Further, p-Si/n-In2O3 junction diodes are fabricated with different precursor concentrations. Particularly, the 0.075 M of p-Si/n-In2O3 junction diode recorded a minimum ideality factor of n = 2.64 under light exposed condition, confirming the photo-conducting nature of the diodes in visible wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.S.Y. Jayathilake, T.A. Nirmal Peiris, Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J. Mater. Chem. Eng. 1, 1004 (2018)

    Google Scholar 

  2. H. Wang, H. Li, S. Cao, M. Wang, J. Chen, Z. Zang, Interface modulator of ultrathin magnesium oxide for low‐temperature processed inorganic CsPbIBr2 perovskite solar cells with efficiency over 11% solar RRL (2020)

  3. S. Cao, H. Wang, H. Li, J. Chen, Z. Zang, Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr 2 perovskite solar cells. Chem. Eng. J. 394, 124903 (2020). https://doi.org/10.1016/j.cej.2020.124903

    Article  CAS  Google Scholar 

  4. H. Wang, P. Zhang, Z. Zang, High performance CsPbBr 3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Appl. Phys. Lett. 116(16), 162103 (2020). https://doi.org/10.1063/5.0005464

    Article  CAS  Google Scholar 

  5. B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr 2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2018.12.097

    Article  PubMed  Google Scholar 

  6. A. Stadler, Transparent conducting oxides-an up-to-date overview. Materials (Basel). 5, 661–683 (2012). https://doi.org/10.3390/ma5040661

    Article  PubMed  PubMed Central  Google Scholar 

  7. V. Van Truong, J. Singh, S. Tanemura, M. Hu, Nanomaterials for light management in electro-optical devices. J. Nanomater. (2012). https://doi.org/10.1155/2012/981703

    Article  Google Scholar 

  8. N. Farmakidis, N. Youngblood, X. Li, J. Tan, J.L. Swett, Z. Cheng, D.C. Wright, W.H. Pernice, H. Bhaskaran, Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aaw2687

    Article  PubMed  PubMed Central  Google Scholar 

  9. E. Stassen, C. Kim, D. Kong, H. Hu, M. Galili, L.K. Oxenløwe, K. Yvind, M. Pu, Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photon. 4, 100804 (2019). https://doi.org/10.1063/1.5115232

    Article  CAS  Google Scholar 

  10. J. Lee, J. Moon, J.E. Pi, S.D. Ahn, H. Oh, S.Y. Kang, K.H. Kwon, High mobility ultra-thin crystalline indium oxide thin film transistor using atomic layer deposition. Appl. Phys. Lett. 113, 112102 (2018). https://doi.org/10.1063/1.5041029

    Article  CAS  Google Scholar 

  11. G.C. Marques, M. Tahoori, J. Aghassi-Hagmann, A.M. Sukuramsyah, A. Arnal, S. Bolat, Y. Romanyuk, Fabrication and modeling of pn-diodes based on inkjet printed oxide semiconductors. IEEE Electron Dev. Lett. (2019). https://doi.org/10.1109/led.2019.2956346

    Article  Google Scholar 

  12. M. Seetha, D. Mangalaraj, Nano-porous indium oxide transistor sensor for the detection of ethanol vapours at room temperature. Appl. Phys. A Mater. Sci. Process. 106, 137–143 (2011). https://doi.org/10.1007/s00339-011-6655-y

    Article  CAS  Google Scholar 

  13. P.C. Chen, G. Shen, H. Chen, Y.G. Ha, C. Wu, S. Sukcharoenchoke, Y. Fu, J. Liu, A. Facchetti, T.J. Marks, M.E. Thompson, C. Zhou, High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. ACS Nano 3, 3383–3390 (2009). https://doi.org/10.1021/nn900704c

    Article  CAS  PubMed  Google Scholar 

  14. W. Bramer-Escamilla, P. Grima Gallardo, M. Salas, P. Silva, Development and characterization of a p–n junction of Si-Cu3NbSe4, Conference: VIII Congreso Venezolano de Física at Tucacas-Venezuela in project: research on sulvanites materials for optoelectronic devices: solar cells and radiation detectors (2014)

  15. G. Rupprecht, Z. Phys. 139, 504 (1954)

    Article  CAS  Google Scholar 

  16. M. Seetha, D. Mangalaraj, Nano-porous indium oxide transistor sensor for the detection of ethanol vapours at room temperature. Appl. Phys. A 106(1), 137–143 (2011). https://doi.org/10.1007/s00339-011-6655-y

    Article  CAS  Google Scholar 

  17. M. Liess, H. Steffes, J. Electrochem. Soc. 147, 3151 (2000)

    Article  CAS  Google Scholar 

  18. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli, G. Sberveglieri, In2O3 nanowires for gas sensors: morphology and sensing characterisation. Thin Solid Films 515(23), 8356–8359 (2007). https://doi.org/10.1016/j.tsf.2007.03.034

    Article  CAS  Google Scholar 

  19. J. Liu, T. Luo, F. Meng, K. Qian, Y. Wan, J. Liu, Porous hierarchical In2O3 micro-/nanostructures: preparation, formation mechanism, and their application in gas sensors for noxious volatile organic compound detection. J. Phys. Chem. C 114(11), 4887–4894 (2010). https://doi.org/10.1021/jp911768m

    Article  CAS  Google Scholar 

  20. K. Wafaa Khalid, A. Ali Abadi, F. Abdulqader Dawood, Synthesis of SnO2 nanowires on quartz and silicon substrates for gas sensors. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01617-3

    Article  Google Scholar 

  21. R. Groth, Investigations on semiconducting indium oxide layers. Phys. Status Solidi (b) 14(1), 69–75 (1966). https://doi.org/10.1002/pssb.19660140104

    Article  CAS  Google Scholar 

  22. S. Golden: Thin-film tin-doped indium oxide counter-electrode for electrochromic applications. Solid State Ionics, 28, 1733–1737 (1988)

    Article  Google Scholar 

  23. I. Hamberg, C.G. Granqvist, Transparent and infrared-reflecting indium-tin-oxide films: quantitative modeling of the optical properties. Appl. Opt. 24(12), 1815 (1985). https://doi.org/10.1364/ao.24.001815

    Article  CAS  PubMed  Google Scholar 

  24. J.S. Kim, R.H. Friend, F. Cacialli, Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium–tin–oxide anodes. Appl. Phys. Lett. 74(21), 3084–3086 (1999). https://doi.org/10.1063/1.124069

    Article  CAS  Google Scholar 

  25. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, M. Gerken, Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes. J. Appl. Phys. 104(9), 093111 (2008). https://doi.org/10.1063/1.3014034

    Article  CAS  Google Scholar 

  26. T. Chtouki, L. El Mezouary, A. Ammous et al., Analytical modeling and numerical simulation for optimization of inorganic material thin layer using genetic algorithms. J. Inorg. Organomet. Polym Mater. 27, 1664–1673 (2017). https://doi.org/10.1007/s10904-017-0628-3IR15

    Article  CAS  Google Scholar 

  27. B.S. Kim, Y. Taek Jeong, D. Lee, T. Choi, S.H. Jung, J. Whan Choi, S. Shin, Solution-processed zinc-indium-tin oxide thin-film transistors for flat-panel displays. Appl. Phys. Lett. 103(7), 072110 (2013). https://doi.org/10.1063/1.4818724

    Article  CAS  Google Scholar 

  28. M.T. Hardy, C.O. Holder, D.F. Feezell, S. Nakamura, J.S. Speck, D.A. Cohen, S.P. DenBaars, Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl. Phys. Lett. 103(8), 081103 (2013). https://doi.org/10.1063/1.4819171

    Article  CAS  Google Scholar 

  29. S. Rehman, S.M. Asiri, F.A. Khan et al., Anticandidal and in vitro anti-proliferative activity of sonochemically synthesized indium tin oxide nanoparticles. Sci. Rep. 10, 3228 (2020). https://doi.org/10.1038/s41598-020-60295-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.A. Islam, R.C. Roy, J. Hossain, M. Julkarnain, K.A. Khan, Electrical and optical transport characterizations of electron beam evaporated V doped In2O3 thin films. Mater. Res. 20, 102–108 (2017). https://doi.org/10.1590/1980-5373-MR-2015-0753

    Article  CAS  Google Scholar 

  31. P. Nath, R.F. Bunshah, B.M. Basol, O.M. Staffsud, Electrical and optical properties of In2O3:Sn films prepared by activated reactive evaporation. Thin Solid Films 72, 463–468 (1980). https://doi.org/10.1016/0040-6090(80)90532-5

    Article  CAS  Google Scholar 

  32. M.Z. Atashbar, B. Gong, H.T. Sun, W. Wlodarski, R. Lamb, Investigation on ozone-sensitive In2O3 thin films. Thin Solid Films 354, 222–226 (1999). https://doi.org/10.1016/S0040-6090(99)00405-8

    Article  CAS  Google Scholar 

  33. K. Utsumi, H. Iigusa, R. Tokumaru, P.K. Song, Y. Shigesato, Study on In2O3-SnO2 transparent and conductive films prepared by dc sputtering using high density ceramic targets. Thin Solid Films 445, 229–234 (2003). https://doi.org/10.1016/S0040-6090(03)01167-2

    Article  CAS  Google Scholar 

  34. L. Francioso, A. Forleo, S. Capone, M. Epifani, A.M. Taurino, P. Siciliano, Nanostructured In2O3-SnO2 sol-gel thin film as material for NO2 detection. Sens. Actuat. B Chem. 114, 646–655 (2006). https://doi.org/10.1016/j.snb.2005.03.124

    Article  CAS  Google Scholar 

  35. S.A. Palomares-Sanchez, B.E. Watts, D. Klimm, A. Baraldi, A. Parisini, S. Vantaggio, R. Fornari, Sol–gel growth and characterization of In2O3 thin films. Thin Solid Films 645, 383–390 (2018). https://doi.org/10.1016/j.tsf.2017.10.049

    Article  CAS  Google Scholar 

  36. M. Seetha, D. Mangalaraj, Y. Masuda, Medium dependent size and shape tuning of indium oxide nanoparticles and their gas sensing properties. Adv. Sci. Eng. Med. 3, 202–212 (2011). https://doi.org/10.1166/asem.2011.1106

    Article  CAS  Google Scholar 

  37. E. Shigeno, S. Seki, K. Shimizu, Y. Sawada, M. Ogawa, A. Shida, A. Yoshinaka, Formation of indium oxide thin films fabricated by a dip-coating process using indium 2-ethylhexanoate monohydroxide. Surf. Coat. Technol. 169–170, 566–570 (2003). https://doi.org/10.1016/s0257-8972(03)00092-6

    Article  Google Scholar 

  38. M. Seetha, S. Bharathi, A. Dhayal Raj, D. Mangalaraj, D. Nataraj, Optical investigations on indium oxide nano-particles prepared through precipitation method. Mater. Charact. 60, 1578–1582 (2009). https://doi.org/10.1016/j.matchar.2009.09.009

    Article  CAS  Google Scholar 

  39. Z.B. Zhou, R.Q. Cui, Q.J. Pang, Y.D. Wang, F.Y. Meng, T.T. Sun, Z.M. Ding, X.B. Yu, Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process. Appl. Surf. Sci. 172, 245–252 (2001). https://doi.org/10.1016/S0169-4332(00)00862-X

    Article  CAS  Google Scholar 

  40. G. Korotcenkov, B.K. Cho, Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties. Prog. Cryst. Growth Charact. Mater. 63, 1–47 (2017). https://doi.org/10.1016/j.pcrysgrow.2016.12.001

    Article  CAS  Google Scholar 

  41. J. Joseph Prince, S. Ramamurthy, B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Spray pyrolysis growth and material properties of In2O3 films. J. Cryst. Growth. 240, 142–151 (2002). https://doi.org/10.1016/S0022-0248(01)02161-3

    Article  CAS  Google Scholar 

  42. M. Girtan, G. Folcher, Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process. Surf. Coatings Technol. 172, 242–250 (2003). https://doi.org/10.1016/S0257-8972(03)00334-7

    Article  CAS  Google Scholar 

  43. K. Arshak, O. Korostynska, J. Henry, Thick film PN-junctions based on mixed oxides of indium and silicon as gamma radiation sensors. Microelectron. Intl. 21(1), 19–27 (2004). https://doi.org/10.1108/13565360410517085

    Article  CAS  Google Scholar 

  44. N.M. Khusayfan, A.A. Al-Ghamdi, F. Yakuphanoglu, Solar light photodetectors based on nanocrystalline copper indium oxide/p-Si heterojunctions. J. Alloy Compd. 663, 796–807 (2016). https://doi.org/10.1016/j.jallcom.2015.12.070

    Article  CAS  Google Scholar 

  45. A. Hashim, Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01528-3

    Article  Google Scholar 

  46. S. Annathurai, S. Chidambaram, B. Baskaran, G.K.D. PrasannaVenkatesan, Green synthesis and electrical properties of p-CuO/n-ZnO heterojunction diodes. J. Inorg. Organomet. Polym. Mater. 12, 20 (2018). https://doi.org/10.1007/s10904-018-1026-1

    Article  CAS  Google Scholar 

  47. M. Thirumoorthi, J. Thomas Joseph Prakash, Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 4, 124–132 (2016). https://doi.org/10.1016/j.jascer.2016.01.001

    Article  Google Scholar 

  48. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. J. Mater. Sci. Mater. Electron. 29, 2618–2627 (2018). https://doi.org/10.1007/s10854-017-8187-5

    Article  CAS  Google Scholar 

  49. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Influence of metal work function and incorporation of Sr atom on WO3 thin films for MIS and MIM structured SBDs. Superlattices Microstruct. 119, 134–149 (2018). https://doi.org/10.1016/j.spmi.2018.04.049

    Article  CAS  Google Scholar 

  50. K. Shanmugasundaram, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, Growth and characterization of jet nebulizer spray deposited n-type WO3 thin films for junction diode application. Orient. J. Chem. 33, 2484–2491 (2017). https://doi.org/10.13005/ojc/330542

    Article  CAS  Google Scholar 

  51. A. BagheriKhatibani, S.M. Rozati, Z. Bargbidi, Preparation, study and nanoscale growth of indium oxide thin films. Acta Phys. Pol. A. 122, 220–223 (2012). https://doi.org/10.12693/APhysPolA.122.220

    Article  Google Scholar 

  52. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.G. Patil, Effect of variation of precursor concentration on structural, microstructural, optical and gas sensing properties of nanocrystalline TiO2 thin films prepared by spray pyrolysis techniques. Bull. Mater. Sci. 36, 1153–1160 (2013). https://doi.org/10.1007/s12034-013-0597-2

    Article  CAS  Google Scholar 

  53. E. Savarimuthu, K.C. Lalithambika, A. MosesEzhilRaj, L.C. Nehru, S. Ramamurthy, A. Thayumanavane, C. Sanjeeviraja, M. Jayachandran, Synthesis and materials properties of transparent conducting In2O3 films prepared by sol–gel-spin coating technique. J. Phys. Chem. Solids 68, 1380–1389 (2007). https://doi.org/10.1016/j.jpcs.2007.02.038

    Article  CAS  Google Scholar 

  54. E. Purushotham, N. Gopi Krishna, X-ray determination of crystallite size and effect of lattice strain on the Debye–Waller factors of Ni nano powders using high energy ball mill 7 1–7 (2015).

  55. J. Raj Mohamed, L. Amalraj, Effect of precursor concentration on physical properties of nebulized spray deposited In2S3 thin films. J. Asian Ceram. Soc. 4(3), 357–366 (2016). https://doi.org/10.1016/j.jascer.2016.07.002

    Article  Google Scholar 

  56. S. Wieghold, J.P. Correa-Baena, L. Nienhaus, S. Sun, K.E. Shulenberger, Z. Liu, T. Buonassisi, Precursor concentration affects grain size, crystal orientation, and local performance in mixed-ion lead perovskite solar cells. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00913

    Article  Google Scholar 

  57. A. Narmada, P. Kathirvel, L. Mohana, S. Saravanakumar, R. Marnadu, J. Chandrasekaran, Jet nebuliser spray pyrolysed indium oxide and nickel doped indium oxide thin films for photodiode application. Optik 202, 163701 (2020). https://doi.org/10.1016/j.ijleo.2019.163701

    Article  CAS  Google Scholar 

  58. D.M. Hausmann, R.G. Gordon, Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 249, 251–261 (2003). https://doi.org/10.1016/S0022-0248(02)02133-4

    Article  CAS  Google Scholar 

  59. I.N. Reddy, C.V. Reddy, M. Cho, J. Shim, D. Kim, Structural, optical and XPS study of thermal evaporated In2O3 thin films. Mater. Res. Express. (2017). https://doi.org/10.1088/2053-1591/aa7f59

    Article  Google Scholar 

  60. C.W. Dhananjay, Realization of In2O3 thin film transistors through reactive evaporation process. Appl. Phys. Lett. 91, 132111 (2007). https://doi.org/10.1063/1.2789788

    Article  CAS  Google Scholar 

  61. L. Chen, J. Deng, H. Gao, Q. Yang, L. Kong, M. Cui, Z. Zhang, Ellipsometric study and application of rubrene thin film in organic Schottky diode. Appl. Surf. Sci. 388, 396–400 (2016). https://doi.org/10.1016/j.apsusc.2015.12.111

    Article  CAS  Google Scholar 

  62. A. Yahia, A. Attaf, H. Saidi, M. Dahnoun, C. Khelifi, A. Bouhdjer, A. Saadi, H. Ezzaouia, Structural, optical, morphological and electrical properties of indium oxide thin films prepared by sol gel spin coating process. Surf. Interfaces. 14, 158–165 (2019). https://doi.org/10.1016/j.surfin.2018.12.012

    Article  CAS  Google Scholar 

  63. A. Ibraheem, A. Ali, Molarities effect on structural and optical properties of ZnO prepared by spray pyrolysis. Intl. J. Sci. Eng. Res. 5, 2250–2256 (2014)

    Google Scholar 

  64. M.P. Sarma, G. Wary, Effect of molarity on structural and optical properties of chemically deposited nanocrystalline PbS. Thin Film Intl. Lett. Chem. Phys. Astron. 74, 22–35 (2017)

    Article  Google Scholar 

  65. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, P. Balraju, Zirconia modified nanostructured MoO3 thin films deposited by spray pyrolysis technique for Cu/MoO3-ZrO2/p-Si structured Schottky barrier diode application. Optik 199, 163351 (2019). https://doi.org/10.1016/j.ijleo.2019.163351

    Article  CAS  Google Scholar 

  66. N. Salah, S.S. Habib, Z.H. Khan, E. Alarfaj, S.A. Khan, Synthesis and characterization of Se 35Te 65-xGex nanoparticle films and their optical properties. J. Nanomater. 2012, 1–9 (2012). https://doi.org/10.1155/2012/393084

    Article  CAS  Google Scholar 

  67. P. Wanarattikan, P. Jitthammapirom, R. Sakdanuphab, A. Sakulkalavek, Effect of grain size and film thickness on the thermoelectric properties of flexible Sb2Te3 thin films. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/6954918

    Article  Google Scholar 

  68. L.B. Freund, Thin film materials stress, defect formation and surface. Evolution (2014). https://doi.org/10.1017/CBO9780511754715

    Article  Google Scholar 

  69. H. Cao, X. Qiu, Y. Liang, Q. Zhu, M. Zhao, Room-temperature ultraviolet-emitting In2O3 nanowires. Appl. Phys. Lett. 83, 761–763 (2003). https://doi.org/10.1063/1.1596372

    Article  CAS  Google Scholar 

  70. A. Ayeshamariam, M. Bououdina, C. Sanjeeviraja, Optical, electrical and sensing properties of In2O3 nanoparticles. Mater. Sci. Semicond. Process. 16, 686–695 (2013). https://doi.org/10.1016/j.mssp.2012.12.009

    Article  CAS  Google Scholar 

  71. N. Anitha, M. Anitha, J. Raj Mohamed, S. Valanarasu, L. Amalraj, Influence of tin precursor concentration on physical properties of nebulized spray deposited tin disulfide thin films. J. Asian Ceram. Soc. 6, 121–131 (2018). https://doi.org/10.1080/21870764.2018.1450026

    Article  Google Scholar 

  72. M. Girtan, G.I. Rusu, On the size effect in In2O3thin films, Fizica. Stării Condensate (1999–2000) 166–172.

  73. I.A. Ruf, Structure and properties of tin-doped indium oxide thin films prepared by reactive electron beam evaporation with a zone-confining arrangement. J. Appl. Phys. 79, 4057–4065 (1996). https://doi.org/10.1063/1.361882

    Article  Google Scholar 

  74. M. Rusua, A. Stanciub, V. Bulacovschib, G.G. Rusua, M. Bucescua, G.I. Rusua, Temperature dependence of the electrical conductivity and Seebeck coefficient of new poly(ester-syloxane)urethane elastomers in thin films. Thin Solid Films 326, 256–262 (1998)

    Article  Google Scholar 

  75. H. Park, K.R. Yoon, S.K. Kim, I.D. Kim, J. Jin, Y.H. Kim, B.S. Bae, Highly conducting In2O3 nanowire network with passivating ZrO2 thin film for solution-processed field effect transistors. Adv. Electron. Mater. 2, 1600218 (2016). https://doi.org/10.1002/aelm.201600218

    Article  CAS  Google Scholar 

  76. M.D. Benoy, B. Pradeep, Preparation and characterization of indium oxide (1n2O3) films by activated reactive evaporation. Bull. Mater. Sci. 20, 1029–1038 (1997)

    Article  CAS  Google Scholar 

  77. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Investigation of microstructural, optical and dc electrical properties of spin coated Al:WO3 thin films for n-Al:WO3/p-Si heterojunction diodes. Optik 145, 169–180 (2017). https://doi.org/10.1016/j.ijleo.2017.07.049

    Article  CAS  Google Scholar 

  78. R.E. Hummel, Electron. Prop. Mater. https://doi.org/10.1007/978-1-4419-8164-6

  79. P. Jeevanandam, S. Vasudevan, Conductivity of a confined polymer electrolyte: lithium-polypropylene glycol intercalated in layered CdPS3. J. Phys. Chem. B. 102, 4753–4758 (1998). https://doi.org/10.1021/jp980357d

    Article  CAS  Google Scholar 

  80. H. Liu, H.S. Choe, Y. Chen, J. Suh, C. Ko, S. Tongay, J. Wu, Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus. Appl. Phys. Lett. 111, 102101 (2017). https://doi.org/10.1063/1.4985333

    Article  CAS  Google Scholar 

  81. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019). https://doi.org/10.1016/j.apsusc.2019.02.214

    Article  CAS  Google Scholar 

  82. M. Balaji, J. Chandrasekaran, M. Raja, R. Marnadu, Impact of Cu concentration on the properties of spray coated Cu-MoO3 thin films: evaluation of n-CuMoO3/p-Si junction diode by Norde and Cheung’s methods. Mater. Res. Express 6, 106404 (2019)

    Article  CAS  Google Scholar 

  83. V. Balasubramani, J. Chandrasekaran, R. Marnadu, P. Vivek, S. Maruthamuthu et al., Impact of annealing temperature on spin coated V2O5 thin films as interfacial layer in Cu/V2O5/n-Si structured Schottky barrier diodes. J Inorg Organomet Polym Mater. 10, 20 (2019). https://doi.org/10.1007/s10904-019-01117-z

    Article  CAS  Google Scholar 

  84. H.K. Khanfar, A.F. Qasrawi, Y.A. Zakarneh, N.M. Gasanly, Design and applications of Yb/Ga2Se3/C Schottky barriers. IEEE Sens. J. 17, 4429–4434 (2017). https://doi.org/10.1109/JSEN.2017.2702710

    Article  CAS  Google Scholar 

  85. D. Thangaraju, R. Marnadu, V. Santhana,a A. Durairajan, P. Kathirvel, J. Chandrasekaran, S. Jayakumar, M. A. Valente and Darius C. Greenidge, Solvent influenced synthesis of single-phase SnS2 nanosheets for solution-processed photodiode fabrication (2019) https://doi.org/10.1039/c9ce01417a

  86. Ş. Karataş, Ş. Altindal, A. Türüt, M. Çakar, Electrical transport characteristics of Sn/p-Si Schottky contacts revealed from I-V-T and C-V-T measurements. Phys. B Condens. Matter. 392, 43–50 (2007). https://doi.org/10.1016/j.physb.2006.10.039

    Article  CAS  Google Scholar 

  87. Z. Tekeli, Ş. Altndal, M. Çakmak, S. Özçelik, D. Çalişkan, E. Özbay, The behavior of the I-V-T characteristics of inhomogeneous (NiAu)—Al 0.3Ga0.7 NAlNGaN heterostructures at high temperatures. J. Appl. Phys. 102, 8 (2007). https://doi.org/10.1063/1.2777881

    Article  CAS  Google Scholar 

  88. O. Breitenstein, P. Altermatt, K. Ramspeck, A. Schenk, The origin of ideality factors n > 2 of shunts and surfaces in the dark IV curves of Si solar cells." Proceedings of the 21st European photovoltaic solar energy conference at Dresden (2006),

  89. Semiconductor Devices, Theory and Application (James M, Fiore, Mohawk Valley Community College, Copyright Year, 2018)

  90. V.W.L. Chin, M.A. Green, J.W.V. Storey, Evidence for multiple barrier heights in P-type PtSi Schottky-barrier diodes from I-V-T and photoresponse measurements. Solid-State Electron 33, 299–308 (1990)

    Article  CAS  Google Scholar 

  91. M.A. Yeganeh, S.H. Rahmatollahpur, Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes. J. Semicond. 31, 074001 (2010). https://doi.org/10.1088/1674-4926/31/7/074001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Science and Technology-Science and Engineering Research Board, Government of India, for the major research project (EMR/2016/007874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Seetha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, S., Seetha, M., Chandrasekaran, J. et al. High Photoresponsive p-Si/n-In2O3 Junction Diodes with Low Ideality Factor Prepared Using Closely Packed Octahedral Structured In2O3 Thin Films. J Inorg Organomet Polym 30, 4552–4568 (2020). https://doi.org/10.1007/s10904-020-01663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01663-x

Keywords

Navigation