Skip to main content
Log in

The enhanced microwave broadband absorbing ability of carbon microspheres via electromagnetic simulating honeycomb design

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electromagnetic simulation can be used to design the macroscopic absorbing structure of the microwave absorbing material. Research indicates that the macrostructure can adjust the impedance matching and electromagnetic properties of the materials, thereby improving the absorption performance. Among them, the honeycomb structure is often used in actual products due to its good absorption characteristics and mechanical properties. Therefore, in this work, the absorption performance of the carbon microsphere material was improved through the honeycomb structure design. The carbon microsphere material is firstly prepared by sintering phenolic resin, which has the advantages of convenient synthesis, high yield, and a narrow absorption bandwidth of 4.4 GHz. Then, through the high frequency structure simulator (HFSS) electromagnetic simulation, the honeycomb structure based on the carbon microspheres was macroscopically designed, achieving a larger 8.3 GHz absorption frequency bandwidth. This research completed the combination of electromagnetic simulation and honeycomb structure, improved the absorption bandwidth of carbon microspheres, and opened up a new way for the further improvement and practical application for traditional absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  CAS  Google Scholar 

  2. W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi, J. Yuan, High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009)

    Article  CAS  Google Scholar 

  3. H.L. Lv, Z.H. Yang, S.J. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G.B. Ji, Z.C.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 4, 1900163 (2019)

    Article  CAS  Google Scholar 

  4. Y. Feng, D. Li, Y. Bai, A. Hua, D.S. Pan, Y. Li, Y. Wang, J. He, Z.H. Wang, Y.J. Zhang, W. Liu, Z.D. Zhang, The effect of core–shell structure on microwave absorption properties of graphite-coated magnetic nanocapsules. J. Electron. Mater. 48, 1429–1435 (2019)

    Article  CAS  Google Scholar 

  5. X. Chen, X. Jia, Z. Wu, Z.X. Tang, Y.X. Zeng, X.J. Wang, X.Q. Fu, Y.H. Zou, A Graphite-based metamaterial microwave absorber. IEEE Antenn. Wirele. Propagation Lett. 18, 1016–1020 (2019)

    Article  Google Scholar 

  6. C.P.L. Rubinger, M.E. Leyva, GHz permittivity of carbon black and polyaniline with styrene–butadiene–styrene composites. Polym. Bull. 76, 615–626 (2019)

    Article  CAS  Google Scholar 

  7. B.M. Chen, B. Li, Y. Gao, T.C. Ling, Z.Y. Lu, Z.J. Li, Investigation on electrically conductive aggregates produced by incorporating carbon fiber and carbon black. Constr. Build Mater. 144, 106–114 (2017)

    Article  CAS  Google Scholar 

  8. F. Ye, Q. Song, Z.C. Zhang, W. Li, S.Y. Zhang, X.Y. Yin, Y.Z. Zhou, H.W. Tao, Y.S. Liu, L.F. Cheng, L.T. Zhang, H.J. Li, Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018)

    Article  CAS  Google Scholar 

  9. W. Zhou, R.M. Yin, L. Long, H. Luo, W.D. Hu, Y.H. Ding, Y. Li, Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 44, 12301–12307 (2018)

    Article  CAS  Google Scholar 

  10. S. Dong, W.Z. Zhang, P. Hu, Y.M. Zhang, J.C. Han, X.G. Luo, Nitrogen content dependent microwave absorption property of nitrogen-doped SiC materials annealed in N2: opposing trends for microparticles and nanowires. J. Alloy. Compd. 758, 256–267 (2018)

    Article  CAS  Google Scholar 

  11. X.L. Ye, Z.F. Chen, M. Li, T. Wang, C. Wu, J.X. Zhang, Q.B. Zhou, H.Z. Liu, S. Cui, Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment . ACS Sustain. Chem. Eng. 7, 18395–18404 (2019)

    Article  CAS  Google Scholar 

  12. X.L. Wang, X. Huang, Z.R. Chen, X.P. Liao, C. Liu, B. Shi, Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials. J. Mater. Chem. C 3, 10146–10153 (2015)

    Article  CAS  Google Scholar 

  13. N. Zhao, W. Wang, X. Lei, Synthesis, structure and magnetic properties of Fe3N nanoparticles. J. Mater. Sci.-Mater. Electron. 28, 15701–15707 (2017)

    Article  CAS  Google Scholar 

  14. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, CoNi@SiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016)

    Article  CAS  Google Scholar 

  15. X.L. Wang, Q.Y. Geng, G.M. Shi, G. Xu, J. Yu, Y.Y. Guan, Y.J. Zhang, D. Li, One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption. J. Alloy Compd. 803, 818–825 (2019)

    Article  CAS  Google Scholar 

  16. Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci.-Mater. Electron. 29, 17122–17136 (2018)

    Article  CAS  Google Scholar 

  17. S. Jeon, J. Kim, K.H. Kim, Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Appl. Surf. Sci. 475, 1065–1069 (2019)

    Article  CAS  Google Scholar 

  18. L.H. He, Y. Zhao, L.Y. Xing, P.G. Liu, Z.Y. Wang, Y.W. Zhang, Y. Wang, Y.C. Du, Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv. 8, 2971–2977 (2018)

    Article  CAS  Google Scholar 

  19. P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He, W.H. Huang, J.H. Luo, Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020)

    Article  CAS  Google Scholar 

  20. P.B. Liu, S. Gao, Y. Wang, F.T. Zhou, Y. Huang, W.H. Huang, N.H. Chang, Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020)

    Article  CAS  Google Scholar 

  21. P.B. Liu, S. Gao, Y. Wang, F.T. Zhou, Y. Huang, J.H. Luo, Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. Part B 202, 108406 (2020)

    Article  CAS  Google Scholar 

  22. H.J. Wu, Z.H. Zhao, G.L. Wu, Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 566, 21–32 (2020)

    Article  CAS  Google Scholar 

  23. X.H. Li, J. Feng, Y.P. Du, J.T. Bai, H.M. Fan, H.L. Zhang, Y. Peng, F.S. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/Graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)

    Article  CAS  Google Scholar 

  24. Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of coreshell Fe3O4 composites. ACS Appl. Mater. Interfaces 6, 12997–13006 (2014)

    Article  CAS  Google Scholar 

  25. L. Wang, Y. Huang, X. Sun, H.J. Huang, P.B. Liu, M. Zong, Y. Wang, Synthesis and microwave absorption enhancement of Graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014)

    Article  CAS  Google Scholar 

  26. Y. Ding, L. Zhang, Q.L. Liao, G.J. Zhang, S. Liu, Y. Zhang, Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9, 2018–2025 (2016)

    Article  CAS  Google Scholar 

  27. X.J. Fan, H.Q. Zhou, X. Guo, WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 9, 5125–5134 (2015)

    Article  CAS  Google Scholar 

  28. G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, Z.D. Wang, H.J. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  CAS  Google Scholar 

  29. M. Wu, A.K. De, X.S. Qi, R. Xie, S.J. Qin, C.Y. Deng, G.L. Wu, W. Zhong, Optimization, selective and efficient production of CNTs/CoxFe3-xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 8, 11936–11949 (2020)

    Article  CAS  Google Scholar 

  30. R. Wang, E.Q. Yang, X.S. Qi, R. Xie, S.J. Qin, C.Y. Deng, W. Zhong, Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surf. Sci. 516, 146–159 (2020)

    Google Scholar 

  31. X. Li, L.M. Yu, W.K. Zhao, Y.Y. Shi, L.J. Yu, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, X.D. Liu, F.Y. Fu, Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem. Eng. J. 379, 122393 (2020)

    Article  CAS  Google Scholar 

  32. D.P. Sun, Q. Zou, Y.P. Wang, Y.J. Wang, W. Jiang, F.S. Li, Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6, 6557–6562 (2014)

    Article  CAS  Google Scholar 

  33. J.L. Liu, H.S. Liang, H.J. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part A 130, 105760 (2020)

    Article  CAS  Google Scholar 

  34. H. Wang, Y.Y. Dai, D.Y. Geng, S. Ma, D. Li, J. An, J. He, W. Liu, Z.D. Zhang, CoxNi100-x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption. Nanoscale 7, 17312–17319 (2015)

    Article  CAS  Google Scholar 

  35. Y.Y. Shi, L.J. Yu, K. Li, S.Z. Li, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, F.B. Meng, Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption. Compos. Sci. Technol. 197, 108246 (2020)

    Article  CAS  Google Scholar 

  36. M. Qin, H.S. Liang, X.R. Zhao, H.J. Wu, Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity. J. Colloid Interface Sci. 566, 347–356 (2020)

    Article  CAS  Google Scholar 

  37. L. Liu, C.Z. Fan, N.B. Zhu, Z.Y. Zhao, R.P. Liu, Effective electromagnetic properties of honeycomb substrate coated with dielectric or magnetic layer. Appl. Phys. A 116, 901–905 (2014)

    Article  CAS  Google Scholar 

  38. W.H. Choi, C.G. Kim, Broadband microwave-absorbing honeycomb structure with novel design concept. Compos. Part B 83, 14–20 (2015)

    Article  CAS  Google Scholar 

  39. X. Li, Y.F. Zhu, X.Q. Liu, B.B. Xu, Q.Q. Ni, A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS-EP shape memory composites. Compos. Struct. 238, 111954 (2020)

    Article  Google Scholar 

  40. Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020)

    Article  CAS  Google Scholar 

  41. X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu, Z. Zhang, G.B. Ji, The environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020)

    Article  CAS  Google Scholar 

  42. Y. Wang, X. Gao, X.M. Wu, W.Z. Zhang, C.Y. Luo, P.B. Liu, Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber. Chem. Eng. J. 375, 121942 (2019)

    Article  CAS  Google Scholar 

  43. Y.C. Sun, D.P. Li, Y. Yang, L.S. Fan, S. Wu, P. Wang, Y. Song, Achieving rough sphere-shaped ZnS with superior attenuation electromagnetic absorption performance. RSC Adv. 7, 3907–3913 (2017)

    Article  CAS  Google Scholar 

  44. X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y.W. Du, Thermal conversion of Fe3O4@metal-organic framework: a new method for efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015)

    Article  CAS  Google Scholar 

  45. W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016)

    Article  CAS  Google Scholar 

  46. L. Lin, H.L. Xing, R.W. Shu, L. Wang, X.L. Ji, D.X. Tan, Y. Gan, Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals. RSC Adv. 5, 94539–94550 (2015)

    Article  CAS  Google Scholar 

  47. H.L. Lv, Y.H. Guo, G.L. Wu, G.B. Ji, Y. Zhao, Z.C.J. Xu, Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660–5668 (2017)

    Article  CAS  Google Scholar 

  48. X.Q. Cui, X.H. Liang, J.B. Chen, W.H. Gu, G.B. Ji, Y.W. Du, Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon 156, 49–57 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Nature Science Foundation of China (No. 51971111) and the Jiangsu Provincial Key Laboratory of Bionic Functional Materials are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zheng or Guangbin Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Gu, W., Zhao, Y. et al. The enhanced microwave broadband absorbing ability of carbon microspheres via electromagnetic simulating honeycomb design. J Mater Sci: Mater Electron 32, 25809–25819 (2021). https://doi.org/10.1007/s10854-020-04780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04780-y

Navigation