Skip to main content
Log in

Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new set of bismuth lead borate glasses is synthesized using melt quenching technique with the chemical composition 39B2O3 + 30PbO + 20MO + 10Bi2O3 + 1Eu2O3 (where M = K, Na, Ca, Sr and Ba). Lead based host matrix has been chosen since it acts as an effective material for radiation shielding applications. 30% of Lead oxide is used in every glass along with the varying modifier oxides and the comparative study is reported. The amorphous nature is confirmed via XRD analysis for the synthesized glasses. The physical and structural properties are calculated to get a clear idea about the potentiality of shielding that every glass can withstand. Mechanical strength of the glass is checked by calculating the Poisson’s ratio, since breakage of glasses under stress conditions also need to be tested very much in the nuclear reactors for safety purposes. Optical studies are carried out through UV–Vis absorption spectra and the transitions between the energy levels of Eu3+ ions are reported. By using Tauc’s plot direct and indirect band gap values are calculated along with Urbach energy values. Additionally, the radiation shielding properties of the synthesized glasses are also calculated by using both XCOM and ESTAR programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, A. Askin, B.M. Raffah, E.M. Mkawi, R. Rajaramakrishna, Appl. Phys. A. 125, 852 (2019)

    Article  CAS  Google Scholar 

  2. M.I. Sayyed, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.07.153

    Article  Google Scholar 

  3. M. Almatari, O. Agar, E.E. Altunsoy, O. Kilicoglu, M.I. Sayyed, H.O. Tekin, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.01.094

    Article  Google Scholar 

  4. E. Kavaz, H.O. Tekin, O. Agar, E.E. Altunsoy, O. Kilicoglu, M. Kamislioglu, M.M. Abuzaid, M.I. Sayyed, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.05.028

    Article  Google Scholar 

  5. F. Laariedh, M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, T.B. Badeche, J. Non-Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.007

    Article  Google Scholar 

  6. K.M. Kaky, M.I. Sayyed, A. Khammas, A. Kumar, E. Şakar, A.H. Abdalsalam, B.C. Şakar, B. Alim, M.H. Mhareb, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122504

    Article  Google Scholar 

  7. N. Singh, K.J. Singh, K. Singh, H. Singh, Nucl. Instrum. Methods Phys. Res. Sect. B (2004). https://doi.org/10.1016/j.nimb.2004.05.016

    Article  Google Scholar 

  8. M.A. Marzouk, F.H. ElBatal, W.H. Eisa, N.A. Ghoneim, J. Non-Cryst Solids (2014). https://doi.org/10.1016/j.jnoncrysol.2014.01.002

    Article  Google Scholar 

  9. M. Wilson, Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2018.12.022

    Article  Google Scholar 

  10. L.Q. Yao, G.H. Chen, T. Yang, S.C. Cui, Z.C. Li, Y. Yang, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.05.092

    Article  Google Scholar 

  11. A. Wagh, Y. Raviprakash, S.D. Kamath, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.11.299

    Article  Google Scholar 

  12. V. Hegde, N. Chauhan, V. Kumar, C.D. Viswanath, K.K. Mahato, S.D. Kamath, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2018.11.023

    Article  Google Scholar 

  13. L.Q. Yao, G.H. Chen, S.C. Cui, H.J. Zhong, C. Wen, J. Non-Cryst. Solids (2016). https://doi.org/10.1016/j.jnoncrysol.2016.04.039

    Article  Google Scholar 

  14. H.H. Hegazy, M.S. Al-Buriahi, F. Alresheedi, F.I. El-Agawany, C. Sriwunkum, R. Neffati, Y.S. Rammah, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.09.131

    Article  Google Scholar 

  15. V.P. Singh, N.M. Badiger, J. Kaewkhao, J. Non-Cryst. Solids (2014). https://doi.org/10.1016/j.jnoncrysol.2014.08.003

    Article  Google Scholar 

  16. Y. Chen, G. Chen, X. Liu, J. Xu, T. Yang, C. Yuan, C. Zhou, J. Non-Cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.027

    Article  Google Scholar 

  17. G. Sathiyapriya, K. Marimuthu, M.I. Sayyed, A. Askin, O. Agar, J. Non-Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119574

    Article  Google Scholar 

  18. S.A. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2018.10.064

    Article  Google Scholar 

  19. B. Opers, T. Radu, S. Simon, J. Non-Cryst. Solids (2013). https://doi.org/10.1016/j.jnoncrysol.2013.07.024

    Article  Google Scholar 

  20. H.S. Liu, T.S. Chin, S.W. Yung, Mater. Chem. Phys. (1997). https://doi.org/10.1016/S0254-0584(97)80175-7

    Article  Google Scholar 

  21. J.A. Jiménez, E.R. Fachini, C. Zhao, J. Mol. Struct. (2018). https://doi.org/10.1016/j.molstruc.2018.03.095

    Article  Google Scholar 

  22. A. Majjane, A. Chahine, M. Et-tabirou, B. Echchahed, T.O. Do, P. Mc Breen, Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2013.10.013

    Article  Google Scholar 

  23. M.J. Berger, J.H. Hubbell, XCOM: photon cross sections on a personal computer. NBSIR 87, 3597 (1987). https://doi.org/10.2172/6016002

    Article  Google Scholar 

  24. D.F. Swinehart, J. Chem. Educ. (1962). https://doi.org/10.1021/ed039p333

    Article  Google Scholar 

  25. P. Kaur, K.J. Singh, M. Kurudirek, S. Thakur, Spectrochim. Acta A (2019). https://doi.org/10.1016/j.saa.2019.117309

    Article  Google Scholar 

  26. V. Dimitrov, S. Sakka, J. Appl. Phys. (1996). https://doi.org/10.1063/1.360963

    Article  Google Scholar 

  27. A.S. Abouhaswa, M.H. Mhareb, A. Alalawi, M.S. Al-Buriahi, J. Non-Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2020.120130

    Article  Google Scholar 

  28. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, J. Non-Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2018.09.038

    Article  Google Scholar 

  29. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, J. Non-Cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.025

    Article  Google Scholar 

  30. R. Divina, K. Marimuthu, M.I. Sayyed, H.O. Tekin, O. Agar, Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.03.029

    Article  Google Scholar 

  31. M.K. Halimah, M.N.A. Hazlin, F.D. Muhammad, Spectrochim. Acta A (2018). https://doi.org/10.1016/j.saa.2017.12.054

    Article  Google Scholar 

  32. I.Z. Hager, R. El-Mallawany, J. Mater. Sci. (2010). https://doi.org/10.1007/s10853-009-4017-3

    Article  Google Scholar 

  33. H. Jabraoui, M. Badawi, S. Lebègue, Y. Vaills, J. Non-Cryst. Solids (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.004

    Article  Google Scholar 

  34. A. Abd El-Moneim, J. Fluorine Chem. (2019). https://doi.org/10.1016/j.jfluchem.2019.03.007

    Article  Google Scholar 

  35. K. Annapoorani, K. Marimuthu, J. Non-Cryst. Solids (2017). https://doi.org/10.1016/j.jnoncrysol.2017.03.004

    Article  Google Scholar 

  36. L. Xia, L. Wang, Q. Xiao, Z. Li, W. You, Q. Zhang, J. Non-Cryst. Solids (2017). https://doi.org/10.1016/j.jnoncrysol.2017.09.049

    Article  Google Scholar 

  37. R. Vijayakumar, K. Maheshvaran, V. Sudarsan, K. Marimuthu, J. Lumin. (2014). https://doi.org/10.1016/j.jlumin.2014.04.022

    Article  Google Scholar 

  38. R. Rajaramakrishna, P. Nijapai, P. Kidkhunthod, H.J. Kim, J. Kaewkhao, Y. Ruangtaweep, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.151914

    Article  Google Scholar 

  39. Berger, M.J., Hubbell, J.H.: XCOM: photon cross sections on a personal computer. No. NBSIR-87-3597. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research (1987)

  40. Y.S. Alajerami, D. Drabold, M.H. Mhareb, K.L. Cimatu, G. Chen, M. Kurudirek, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.039

    Article  Google Scholar 

  41. Y.S. Alajerami, D.A. Drabold, M.H. Mhareb, K.N. Subedi, K.L. Cimatu, G. Chen, J. Appl. Phys. (2020). https://doi.org/10.1063/1.5143116

    Article  Google Scholar 

  42. M.S. Al-Buriahi, M.I. Sayyed, Y. Al-Hadeethi, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.148

    Article  Google Scholar 

  43. M.G. Dong, X.X. Xue, Y. Elmahroug, M.I. Sayyed, M.H.M. Zaid, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.02.065

    Article  Google Scholar 

  44. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhadt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho et al., Nucl. Instrum. Methods Phys. Res. Sect. A (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  45. SCHOTT: https://www.schott.com/advanced_optics/english/products/opticalmaterials/ special-materials/radiation-shielding-glasses/index.html. Accessed 03 Sept 2018

  46. I.I. Bashter, Ann. Nucl. Energy (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

  47. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, Nucl. Instrum. Methods B (2008). https://doi.org/10.1016/j.nimb.2008.06.034

    Article  Google Scholar 

  48. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.138

    Article  Google Scholar 

  49. I. Boukhris, A. Alalawi, M.S. Al-Buriahi, I. Kebaili, M.I. Sayyed, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.047

    Article  Google Scholar 

  50. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, B.T. Tonguc, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.091

    Article  Google Scholar 

  51. Y.B. Saddeek, S.A. Issa, T. Alharbi, K. Aly, M. Ahmad, H.O. Tekin, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.09.254

    Article  Google Scholar 

  52. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods B (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  53. The Stopping and Range of Ions in Matter (SRIM) www.srim.org.

  54. I.O. Olarinoye, Y.S. Rammah, S. Alraddadi, C. Sriwunkum, A.F. Abd El-Rehim, H.Y. Zahran, M.S. Al-Buriahi, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.092

    Article  Google Scholar 

  55. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, A. Alalawi, A.S. Abouhaswa, B. Tonguc, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.226

    Article  Google Scholar 

  56. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.240

    Article  Google Scholar 

  57. I. Kebaili, I. Boukhris, M.S. Al-Buriahi, A. Alalawi, M.I. Sayyed, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divina, R., Naseer, K.A., Marimuthu, K. et al. Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J Mater Sci: Mater Electron 31, 21486–21501 (2020). https://doi.org/10.1007/s10854-020-04662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04662-3

Navigation