Skip to main content
Log in

Borotellurite Glasses for Gamma-Ray Shielding: An Exploration of Photon Attenuation Coefficients and Structural and Thermal Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gamma-ray attenuation characteristics and vibrational and thermal features have been studied for singly doped erbium (Er), dysprosium (Dy), and Er/Dy-codoped sodium lithium zinc lead borotellurite glasses. For all glasses, the amorphous nature was confirmed from the x-ray diffraction profiles, and BO3, BO4, TeO4, TeO3 +1, and TeO3 structural units were identified by both Fourier transform infrared spectroscopy and Raman spectroscopy. Glass transition (Tg), onset crystallization (Tx), peak crystallization (Tc), and melting (Tm) temperatures including thermal stabilities (ΔT) were evaluated following the glass differential scanning calorimetry profiles. An enhancement in Tg (359→399°C) and ΔT variation at 131–169°C with Er2O3, Dy2O3, and Er2O3/Dy2O3 incorporation suggested that the prepared glasses possess good thermal stability. The radiation shielding properties within the 0.356–1.33-MeV photon energy range were assessed for all the glasses. The mass attenuation coefficient (μ/ρ) values have been calculated using Monte Carlo simulation code. Further, photon interaction parameters like effective atomic number (Zeff), half-value layer (HVL), and mean free path (MFP) were also computed. The host and 1.0 Er/1.0 Dy (mol.%)-codoped glasses possess the lowest and highest Zeff values and their magnitudes are varied within the range 11.40–15.99 and 12.14–17.26, respectively. For the host glass, exposure buildup factor values were calculated by the geometric progression (GP) fitting method within the 0.015–15-MeV energy range and up to a penetration depth of 40 MFP. The removal cross sections ΣR (cm−1) for fast neutrons were calculated to evaluate the attenuation of neutrons through the prepared glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gurler and U.A. Tarim, J. Radioanal. Nucl. Chem. 293, 397 (2012).

    Article  Google Scholar 

  2. M. Papachristoforou and I. Papayianni, Radiat. Phys. Chem. 149, 26 (2018).

    Article  Google Scholar 

  3. G. Lakshminarayana, M.I. Sayyed, S.O. Baki, A. Lira, M.G. Dong, K.M. Kaky, I.V. Kityk, and M.A. Mahdi, Appl. Phys. A 124, 378 (2018).

    Article  Google Scholar 

  4. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, and P. Limsuwan, Radiat. Phys. Chem. 137, 72 (2017).

    Article  Google Scholar 

  5. L. Shamshad, G. Rooh, P. Limkitjaroenporn, N. Srisittipokakun, W. Chaiphaksa, H.J. Kim, and J. Kaewkhao, Prog. Nucl. Energy 97, 53 (2017).

    Article  Google Scholar 

  6. H.O. Tekin, M.I. Sayyed, T. Manici, and E.E. Altunsoy, Mater. Chem. Phys. 211, 9 (2018).

    Article  Google Scholar 

  7. R. El-Mallawany, M.I. Sayyed, and M.G. Dong, J. Non-Cryst. Solids 474, 16 (2017).

    Article  Google Scholar 

  8. S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, M. Arib, M.A. Hussein, S. Wageh, and L.A. Dim, J. Alloys Compd. 741, 293 (2018).

    Article  Google Scholar 

  9. S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K.N. Krishnakanth, and S.V. Rao, Opt. Mater. 83, 34 (2018).

    Article  Google Scholar 

  10. V.M. Krishna, S.K. Mahamuda, R.A. Talewar, K. Swapna, M. Venkateswarlu, and A.S. Rao, J. Alloys Compd. 762, 814 (2018).

    Article  Google Scholar 

  11. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, and M.A. Mahdi, J. Alloys Compd. 690, 799 (2017).

    Article  Google Scholar 

  12. S. Mohan, S. Kaur, P. Kaur, and D.P. Singh, J. Alloys Compd. 763, 486 (2018).

    Article  Google Scholar 

  13. R. Sharma and A.S. Rao, J. Non-Cryst. Solids 495, 85 (2018).

    Article  Google Scholar 

  14. G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, U. Caldiño, K.M. Kaky, and M.A. Mahdi, J. Lumin. 186, 283 (2017).

    Article  Google Scholar 

  15. F. Qi, F. Huang, T. Wang, R. Ye, R. Lei, Y. Tian, J. Zhang, L. Zhang, and S. Xu, J. Lumin. 202, 132 (2018).

    Article  Google Scholar 

  16. F.M. Ezz-Eldin, N.A.E.L. Alaily, F.A. Khalifa, and H.A.E.L. Batal, “Fundamental of glass science (Germany: Verlag Der Deutschen Glastechnischen Gesellschaft, 1995).

    Google Scholar 

  17. G. Lakshminarayana, S.O. Baki, A. Lira, U. Caldiño, A.N. Meza-Rocha, I.V. Kityk, A.F. Abas, M.T. Alresheedi, and M.A. Mahdi, J. Non-Cryst. Solids 481, 191 (2018).

    Article  Google Scholar 

  18. S. Kaur, A.K. Vishwakarma, N. Deopa, A. Prasad, M. Jayasimhadri, and A.S. Rao, Mater. Res. Bull. 104, 77 (2018).

    Article  Google Scholar 

  19. G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, and M.A. Mahdi, J. Non-Cryst. Solids 459, 150 (2017).

    Article  Google Scholar 

  20. E. Mansour, J. Mol. Struct. 1014, 1 (2012).

    Article  Google Scholar 

  21. K. Selvaraju and K. Marimuthu, J. Lumin. 132, 1171 (2012).

    Article  Google Scholar 

  22. G. Lakshminarayana, S.O. Baki, M.I. Sayyed, M.G. Dong, A. Lira, A.S.M. Noor, I.V. Kityk, and M.A. Mahdi, J. Non-Cryst. Solids 481, 568 (2018).

    Article  Google Scholar 

  23. S.M. Aziz, M.R. Sahar, and S.K. Ghoshal, J. Alloys Compd. 735, 1119 (2018).

    Article  Google Scholar 

  24. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, A.N. Meza-Rocha, C. Falcony, U. Caldiño, I.V. Kityk, A. Méndez-Blas, A.F. Abas, M.T. Alresheedi, and M.A. Mahdi, Opt. Mater. 78, 142 (2018).

    Article  Google Scholar 

  25. M.I. Sayyed and G. Lakshminarayana, J. Non-Cryst. Solids 487, 53 (2018).

    Article  Google Scholar 

  26. J.S. Ashwajeet, T. Sankarappa, T. Sujatha, and R. Ramanna, J. Non-Cryst. Solids 486, 52 (2018).

    Article  Google Scholar 

  27. A. Hruby, Czech. J. Phys. B 22, 1187 (1972).

    Article  Google Scholar 

  28. X-5 Monte Carlo Team, MCNP™ Version 5, A General Monte Carlo N-particle Transport Code. Technical report, LA-UR-03-1987. (LANL, USA, 2003).

  29. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, and K. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM, 2010).

  30. M.G. Dong, R. El-Mallawany, M.I. Sayyed, and H.O. Tekin, Radiat. Phys. Chem. 141, 172 (2017).

    Article  Google Scholar 

  31. P. Yasaka, N. Pattanaboonmee, H.J. Kim, P. Limkitjaroenporn, and J. Kaewkhao, Ann. Nucl. Energy 68, 4 (2014).

    Article  Google Scholar 

  32. K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, and H.S. Sahota, Nucl. Inst. Methods Phys. Res. B 194, 1 (2002).

    Article  Google Scholar 

  33. M. Kurudirek, J. Alloys Compd. 727, 1227 (2017).

    Article  Google Scholar 

  34. M.I. Sayyed, J. Alloys Compd. 688-B, 111 (2016).

    Article  Google Scholar 

  35. A.M.A. Mostafa, S.A.M. Issa, and M.I. Sayyed, J. Alloys Compd. 708, 294 (2017).

    Article  Google Scholar 

  36. M. Kurudirek, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 701, 268 (2013).

    Article  Google Scholar 

  37. http://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html. (Accessed June 2018).

  38. S. Singh, A. Kumar, D. Singh, K.S. Thind, and G.S. Mudahar, Nucl. Instrum. Methods Phys. Res. B 266, 140 (2008).

    Article  Google Scholar 

  39. C. Bootjomchai, J. Laopaiboon, C. Yenchai, and R. Laopaiboon, Radiat. Phys. Chem. 81, 785 (2012).

    Article  Google Scholar 

  40. K. Kaur, K.J. Singh, and V. Anand, Radiat. Phys. Chem. 120, 63 (2016).

    Article  Google Scholar 

  41. A. Kumar, Radiat. Phys. Chem. 136, 50 (2017).

    Article  Google Scholar 

  42. Y. Harima, Y. Sakamoto, S. Tanaka, and M. Kawai, Nucl. Sci. Eng. 94, 24 (1986).

    Article  Google Scholar 

  43. Y. Harima, Radiat. Phys. Chem. 41, 631 (1993).

    Article  Google Scholar 

  44. M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, and M.A. Mahdi, Radiat. Phys. Chem. 139, 33 (2017).

    Article  Google Scholar 

  45. V.P. Singh, N.M. Badiger, N. Chanthima, and J. Kaewkhao, Radiat. Phys. Chem. 98, 14 (2014).

    Article  Google Scholar 

  46. Y. Elmahroug, B. Tellili, and C. Souga, Ann. Nucl. Energy 63, 619 (2014).

    Article  Google Scholar 

  47. A.E. Profio, Radiation Shielding and Dosimetry (New York: Wiley, 1979), p. 557.

    Google Scholar 

  48. A.B. Chilton, J.K. Shultis, and R.E. Faw, Principles of radiation shielding (Englewood Cliffs: Prentice-Hall, 1984), p. 488.

    Google Scholar 

  49. I.I. Bashter, Ann. Nucl. Energy 24, 1389 (1997).

    Article  Google Scholar 

  50. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.Ç. Ersundu, A.E. Ersundu, and I.V. Kityk, Radiat. Phys. Chem. 145, 26 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Putra Malaysia (UPM), Malaysia, as this reported research work is supported and funded by the UPM under the UPM/700-2/1/GPB/2017/9554200 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lakshminarayana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshminarayana, G., Sayyed, M.I., Baki, S.O. et al. Borotellurite Glasses for Gamma-Ray Shielding: An Exploration of Photon Attenuation Coefficients and Structural and Thermal Properties. J. Electron. Mater. 48, 930–941 (2019). https://doi.org/10.1007/s11664-018-6810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6810-8

Keywords

Navigation