Skip to main content
Log in

Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Five new strontium barium borate (BNBD) glasses doped with dysprosium ion and different concentrations of niobium pentoxide were synthesized using the standard melt-quenching method. The physical, structural, optical and gamma radiation shielding properties of these glasses were investigated. Density, average molecular weight, refractive index, molar volume, optical dielectric constant, boron-boron separation, metallization criterion, oxygen packing density, Poisson ratio, optical basicity, optical electronegativity, and two-photon absorption coefficients of the synthesized glasses were determined. By the addition of Nb2O5 content, boron-boron distance and oxygen packing density values increased, while molar volume of oxygen decreased due to the formation of bridging oxygen. The two-photon absorption could be constrained by replacing BaCO3 by niobium pentoxide content which further influences the bandgap. The ionic nature of the titled glasses is discussed using the bonding parameter, optical basicity, ionic and covalent characteristic parameter values. Moreover, the shielding ability of dysprosium ions doped niobium borate glasses against photons, fast neutrons and electrons has been extensively evaluated. For this purpose, the mass attenuation coefficient (µ/ρ, cm2/g) of the glasses and several photon protection parameters, derived from µ/ρ were obtained for 0.015–15 meV. The maximum µ/ρ values were achieved for BNBD0 glass, varying between 0.033 and 35.430 cm2/g. The lowest buildup factor values were found for BNBD0 glass. Furthermore, effective removal cross section values for fast neutrons increased steadily between 0.125 and 0.130 cm−1 due to the increase in the density of the glasses with the enhancing of Nb2O5 concentration. It was noticed that the range of high energy electrons was shorter on the BNBD0 glass. It was concluded that BNBD0 glass with high BaCO3 concentration can be considered as an alternative material in nuclear radiation shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.240

    Article  Google Scholar 

  2. M. El Okr, M. Farouk, M. El-Sherbiny, M.A.K. El-Fayoumi, M.G. Brik, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.07.059

    Article  Google Scholar 

  3. A. Agarwal, A. Sheoran, S. Sanghi, V. Bhatnagar, S.K. Gupta, M. Arora, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. (2010). https://doi.org/10.1016/j.saa.2009.12.003

    Article  Google Scholar 

  4. M. Abdel-Baki, F.A. Abdel-Wahab, F. El-Diasty, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3698623

    Article  Google Scholar 

  5. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman, E.S. Yousef, Appl. Phys. A. (2019). https://doi.org/https://doi.org/10.1007/s00339-019-3166-8.

  6. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban, H.A. Farroh, Appl. Phys. A. (2019). https://doi.org/10.1007/s00339-019-2574-0

    Article  Google Scholar 

  7. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Phys. B Condens. Matter. (2020). https://doi.org/10.1016/j.physb.2019.411946

    Article  Google Scholar 

  8. K.A. Naseer, P. Karthikeyan, S. Arunkumar, P. Suthanthirakumar, K. Marimuthu, Enhanced luminescence properties of Er3+/Yb3+ doped zinc tellurofluoroborate glasses for 1.5 µm optical amplification, in: AIP Conf. Proc., 2020: p. 030237. https://doi.org/10.1063/5.0019171.

  9. S. ShanmugaSundari, K. Marimuthu, M. Sivraman, S.S. Babu, J. Lumin. (2010). https://doi.org/10.1016/j.jlumin.2010.02.046

    Article  Google Scholar 

  10. Q. Chen, K.A. Naseer, K. Marimuthu, P.S. Kumar, B. Miao, K.A. Mahmoud, M.I. Sayyed, J. Aust. Ceram. Soc. (2021). https://doi.org/10.1007/s41779-020-00531-8

    Article  Google Scholar 

  11. K.A. Naseer, S. Arunkumar, K. Marimuthu, J. Non. Cryst. Solids. (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119463

    Article  Google Scholar 

  12. H.H. Xiong, L.F. Shen, E.Y.B. Pun, H. Lin, J. Lumin. (2014). https://doi.org/10.1016/j.jlumin.2014.03.029

    Article  Google Scholar 

  13. E.K. Abdel-Khalek, E.A. Mohamed, A. Ratep, S.M. Salem, I. Kashif, J. Non. Cryst. Solids. (2016). https://doi.org/10.1016/j.jnoncrysol.2016.03.015

    Article  Google Scholar 

  14. L. Srinivasa Rao, M. Srinivasa Reddy, M.V. Ramana Reddy, N. Veeraiah, J. Phys. B Condens. Matter. (2008). https://doi.org/10.1016/j.physb.2008.01.043

    Article  Google Scholar 

  15. T. Srihari, C.K. Jayasankar, Opt. Mater. (Amst). (2017). https://doi.org/10.1016/j.optmat.2017.04.001

    Article  Google Scholar 

  16. N. Krishna Mohan, G. Sahaya Baskaran, N. Veeraiah, J. Phys. Status Solidi. (2006). https://doi.org/10.1002/pssa.200622093

    Article  Google Scholar 

  17. A.S. Abouhaswa, M.H.A. Mhareb, A. Alalawi, M.S. Al-Buriahi, J. Non. Cryst. Solids. (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120130

    Article  Google Scholar 

  18. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, A. Alalawi, A.S. Abouhaswa, B. Tonguc, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.226

    Article  Google Scholar 

  19. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmed, H.O. Tekin, S. Rahman, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.109

    Article  Google Scholar 

  20. M.S. Al-Buriahi, V.P. Singh, J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-020-00457-1

    Article  Google Scholar 

  21. G. Lakshminarayana, A. Kumar, H.O. Tekin, S.A.M. Issa, M.S. Al-Buriahi, D.-E. Lee, J. Yoon, T. Park, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.10.019

    Article  Google Scholar 

  22. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.08.138

    Article  Google Scholar 

  23. K.A. Naseer, K. Marimuthu, Vacuum (2021). https://doi.org/10.1016/j.vacuum.2020.109788

    Article  Google Scholar 

  24. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Eur. Phys. J. Plus. (2021). https://doi.org/10.1140/epjp/s13360-020-01056-6

    Article  Google Scholar 

  25. M. Dogra, K.J. Singh, K. Kaur, V. Anand, P. Kaur, P. Singh, B.S. Bajwa, Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2017.08.008

    Article  Google Scholar 

  26. S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Results Phys. (2018). https://doi.org/10.1016/j.rinp.2017.11.010

    Article  Google Scholar 

  27. S.A.M. Issa, Y.B. Saddeek, H.O. Tekin, M.I. Sayyed, K. SaberShaaban, J. Curr. Appl. Phys. (2018). https://doi.org/10.1016/j.cap.2018.02.018

    Article  Google Scholar 

  28. G. Kilic, S.A.M. Issa, E. Ilik, O. Kilicoglu, H.O. Tekin, J. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.09.103

    Article  Google Scholar 

  29. A. El-Denglawey, H.M.H. Zakaly, K. Alshammari, S.A.M. Issa, H.O. Tekin, W.S. AbuShanab, Y.B. Saddeek, Results Phys. (2021). https://doi.org/10.1016/j.rinp.2021.103839

    Article  Google Scholar 

  30. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, J. Non. Cryst. Solids. (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119754

    Article  Google Scholar 

  31. K.S. Shaaban, H.Y. Zahran, I.S. Yahia, H.I. Elsaeedy, E.R. Shaaban, S.A. Makhlouf, E.A.A. Wahab, E.S. Yousef, Appl. Phys. A. (2020). https://doi.org/10.1007/s00339-020-03982-9

    Article  Google Scholar 

  32. E.A.A. Wahab, K.S. Shaaban, Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aaaee8

    Article  Google Scholar 

  33. M.S. Al-Buriahi, H. Arslan, H.O. Tekin, V.P. Singh, B.T. Tonguc, Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6db4

    Article  Google Scholar 

  34. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  Google Scholar 

  35. A.F.A. El-Rehim, K.S. Shaaban, H.Y. Zahran, I.S. Yahia, A.M. Ali, M.M.A. Halaka, S.A. Makhlouf, E.A.A. Wahab, E.R. Shaaban, J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01708-1

    Article  Google Scholar 

  36. V. Uma, K. Marimuthu, G. Muralidharan, J. Non. Cryst. Solids. (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.022

    Article  Google Scholar 

  37. R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, J. Non. Cryst. Solids. (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120269

    Article  Google Scholar 

  38. G. Sathiyapriya, K. Marimuthu, M.I. Sayyed, A. Askin, O. Agar, J. Non. Cryst. Solids. (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119574

    Article  Google Scholar 

  39. C.B. Annapurna Devi, S. Mahamuda, M. Venkateswarlu, K. Swapna, A. Srinivasa Rao, G. Vijaya Prakash, J. Opt. Mater. (2016). https://doi.org/10.1016/j.optmat.2016.11.016

    Article  Google Scholar 

  40. M.N. Ami Hazlin, M.K. Halimah, F.D. Muhammad, M.F. Faznny, J. Phys. B (2017). https://doi.org/10.1016/j.physb.2017.01.012

    Article  Google Scholar 

  41. V. Dimitrov, S. Sakka, J. Appl. Phys. (1996). https://doi.org/10.1063/1.360963

    Article  Google Scholar 

  42. D.P. Singh, G. Pal Singh, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2012.08.105

    Article  Google Scholar 

  43. M. Çelikbilek Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.223

    Article  Google Scholar 

  44. S. Kaur, D. Arora, S. Kumar, G. Singh, S. Mohan, P. Kaur, P. Kriti, P. Kaur, D.P. Singh, J. Lumin. (2018). https://doi.org/10.1016/j.jlumin.2018.05.034

    Article  Google Scholar 

  45. I.Z. Hager, R. El-Mallawany, J. Mater. Sci. (2010). https://doi.org/10.1007/s10853-009-4017-3

    Article  Google Scholar 

  46. P. Kaur, K.J. Singh, M. Kurudirek, S. Thakur, Spectrochim Acta Part A (2019). https://doi.org/10.1016/j.saa.2019.117309

    Article  Google Scholar 

  47. X. Zhao, X. Wang, H. Lin, Z. Wang, Phys. B Condens. Matter. (2008). https://doi.org/10.1016/j.physb.2008.01.009

    Article  Google Scholar 

  48. K. Swapna, S. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, L. Rama Moorthy, J. Lumin. (2013). https://doi.org/10.1016/j.jlumin.2013.02.035

    Article  Google Scholar 

  49. N. Vijaya, K. UpendraKumar, C.K. Jayasankar, Spectrochim Acta Part A (2013). https://doi.org/10.1016/j.saa.2013.04.036

    Article  Google Scholar 

  50. R.J. Amjad, M.R. Sahar, S.K. Ghoshal, M.R. Dousti, R. Arifin, Opt. Mater. (Amst). (2013). https://doi.org/10.1016/j.optmat.2012.12.024

    Article  Google Scholar 

  51. O. Ravi, C.M. Reddy, B.S. Reddy, B. Deva Prasad Raju, J. Opt. Commun. (2014). https://doi.org/10.1016/j.optcom.2013.09.044

    Article  Google Scholar 

  52. N. Deopa, A.S. Rao, J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2017.07.052

    Article  Google Scholar 

  53. N.F.Mott, E.A. Davis, Electronics Process in Noncrystalline Materials, 1971.

  54. M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, J. Non. Cryst. Solids. (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.051

    Article  Google Scholar 

  55. G. Upender, S. Ramesh, M. Prasad, V.G. Sathe, V.C. Mouli, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.06.006

    Article  Google Scholar 

  56. D.S.Z. M.J. Berger, J H. Hubbel, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, (2010). https://doi.org/https://doi.org/10.18434/T48G6X.

  57. M.I. Sayyed, H. Akyildirim, M.S. Al-Buriahi, E. Lacomme, R. Ayad, G. Bonvicini, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-019-3265-6

    Article  Google Scholar 

  58. SCHOTT, (2018). http://www.schott.com/advanced_optics/english/products/opticalmaterials/special-materials/radiation-shieldingglasses/index.html. Accesed 03 Sept 2018.

  59. I.I. Bashter, Ann. Nucl. Energy. (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

  60. Y.S. Rammah, A.A. Ali, R. El-Mallawany, F.I. El-Agawany, Phys. B Condens. Matter. (2020). https://doi.org/10.1016/j.physb.2020.412055

    Article  Google Scholar 

  61. B. Oto, S.E. Gulebaglan, Z. Madak, E. Kavaz, Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.03.010

    Article  Google Scholar 

  62. N. Ekinci, E. Kavaz, Y. Özdemir, Appl. Radiat. Isot. (2014). https://doi.org/10.1016/j.apradiso.2014.05.003

    Article  Google Scholar 

  63. I.O. Olarinoye, R.I. Odiaga, S. Paul, Heliyon. (2019). https://doi.org/10.1016/j.heliyon.2019.e02017

    Article  Google Scholar 

  64. M.J. Berger, ESTAR, PSTAR and ASTAR: Computer Programs for Calculating Stopping Powers and Ranges for Electrons, Protons and Helium Ions, International Atomic Energy Agency (IAEA), 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Marimuthu or E. Kavaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiyapriya, G., Naseer, K.A., Marimuthu, K. et al. Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. J Mater Sci: Mater Electron 32, 8570–8592 (2021). https://doi.org/10.1007/s10854-021-05499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05499-0

Navigation