Skip to main content
Log in

Investigation of precursors concentration in spray solution on the optoelectronic properties of CuInSe2 thin films deposited by spray pyrolysis method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper indium selenide CuInSe2(CISe) thin films were deposited by chemical spray pyrolysis (CSP) method of CuInS2(CIS) and subsequent selenization process. To study the effects of solution concentration, we prepared different precursors solution of CIS including different amount of indium salts from 0.025 to 0.100 M with In/Cu 1.25 and S/In 4. These results propose that solution concentration is critical for inflecting the morphological, optical, electrical, and electrochemical characteristics of solution-processed CISe films and device performance. The studied morphological properties of deposited samples were homogenous, crack-free with large grains in indium salt concentrations more than 0.075 M. The deposited film thickness depends on the spray precursor concentration and increases for higher concentration. In addition with increasing of indium precursor concentration from 0.025 to 0.100 M in spray solution, the optical bandgap of deposited film decreases from 1.40 to 1.35 eV. Also the films mobility and carrier density were notably influenced by any change in the solution concentration. Electrical and electrochemical properties showed a decrease in carrier density from ~ 1020 to ~ 1017 cm−3 and the increase in mobility of order ~ 10–7 to ~ 10–2 cm2/V s, respectively, for 0.025 M, 0.100 M CISe films. All films exhibited p-type conductivity owing to different concentrations. However, it seems that the concentration of the ideal solution is 0.100 molars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.Y. Kim, W. Baek, S. Kim, G. Kang, I.K. Han, T. Hyeon, M. Park, Moisture proof hole transport layers based on CISe quantum dots for highly stable and large active area perovskite solar cells. Appl. Surf. Sci. 496, 143610 (2019)

    Article  CAS  Google Scholar 

  2. D.H. Lothar Weinhardt, C. Heske, Surface and interface properties in thin-film solar cells: using soft X-rays and electrons to unravel the electronic and chemical structure. Adv. Mater. 31, 1806660 (2019)

    Article  CAS  Google Scholar 

  3. Z. Zhao, Y. Qi, Q. Chen, X. Zheng, Q. Hao, W. Zhang, J. Mao, C. Liu, H. Liu, Solution-based synthesis of dense, large grained CuIn(S, Se)2 thin films using elemental precurcer. Ceram. Int. 43, 6257–6262 (2017)

    Article  CAS  Google Scholar 

  4. J.J. Sanping Wu, S. Yu, Y. Gong, W. Yan, H. Xin, W. Huang, Over 12% efficient low-bandgap CuIn(S, Se)2 solar cells with the absorber processed from aqueous metal complexes solution in air. Nano Energy 62, 818–822 (2019)

    Article  CAS  Google Scholar 

  5. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Amsterdam, 2011)

    Google Scholar 

  6. J.S. Kim, S.K. Baek, Y.B. Kim, H.W. Do, Y.H. Kwon, S.W. Cho, Y.D. Yun, J.H. Yoon, S.W. Kim, H.K. Cho, Copper indium selenide water splitting photoanodes with artificially designed heterophasic blended structure and their high photoelectrochemical performances. Nano Energy 18, 30033–30038 (2018)

    Google Scholar 

  7. B. Kim, G.S. Park, S.Y. Chae, M.K. Kim, H.S. Oh, Y.J. Hwang, W. Kim, B.K. Min, A highly efficient Cu(In, Ga)(S, Se)2 photocathode without a heteromaterials overlayer for solarhydrogen production. Sci. Rep. 8, 5182–5192 (2018)

    Article  CAS  Google Scholar 

  8. S. Menezes, Y. Li, Potential of electrodeposited copper indium selenide thin-films for various solar energy conversion devices. J. Electrochem. Soc. 161, H3083–H3087 (2014)

    Article  CAS  Google Scholar 

  9. T.S.N. Karthikeyan, S. Dhanavel, V.K. Gupta, V. Narayan, A. Stephen, Visible light degradation of textile effluent by electrodeposited multiphase CuInSe2 semiconductor photocatalysts. J. Mol. Liq. 227, 194–201 (2017)

    Article  CAS  Google Scholar 

  10. D.H.F. Kessler, S. Spiering, E. Lotter, H.P. Huber, R. Wuerz, CIGS thin film photovoltaic—approaches and challenges, in High-Efficient Low-Cost Photovoltaics, vol. 28, (Springer, Cham, 2019), pp. 175–218

    Google Scholar 

  11. H.-W. Schock, Solar Cells, Chalcopyrite-Based Thin Film, 2013 Edition. (Springer, New York, NY, 2016)

    Google Scholar 

  12. A.I. Ersan, Y. Muslih, K.H. Kim, Synthesis CuInSe2 (CISe) thin films prepared from metal-ethanolamine complex compound. Indones. J. Sci. Technol. 2, 1410–2528 (2017)

    Google Scholar 

  13. S.M. Ho, M. Sreekanth, C. Ramkumar, M. Archana, B. Mohammad Arif Sobhan, K.G. Deepa, Preparation of CuInSe2 thin films by using various methods(a short review). Orient. J. Chem. 35, 1–13 (2019)

    Article  Google Scholar 

  14. J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei, E. Artegiani, A. Romeo, C.I.G.S. Flexible, CdTe and a-Si: H based thin film solar cells: a review. Prog. Mater Sci. 110, 100619 (2020)

    Article  CAS  Google Scholar 

  15. S. Saber, M. Mollar, A. El Nahrawy, N. Khattab, A. Eid, M. Abo-Aly, B. Marí, Annealing study of electrodeposited CuInSe2 and CuInS2 thin films. Opt. Quant. Electron. 50, 248 (2018)

    Article  CAS  Google Scholar 

  16. V.C. Yadolah Ganjkhanlou, M. Kazemzad, G. Berlier, T. Ebadzadeh, I. Safaee, A. Kolahi, A. Maghsoudipour, Hydrothermal–electrochemical deposition of semiconductor thin films: the case of CuIn(Al)Se2 compound. J. Mater. Sci.: Mater. Electron. 28, 15596–15604 (2017)

    Google Scholar 

  17. Y.S.S. Lugo, M. Espíndol, F. Oliva, V. Izquierdo-Roca, Y. Peña, E. Saucedo, Cationic compositional optimization of CuIn(S1-ySey)2 ultra-thin layers obtained by chemical bath deposition. Appl. Surf. Sci. 404, 57–62 (2017)

    Article  CAS  Google Scholar 

  18. B. Kavitha, M. Dhanam, Raman, photoluminescence analysis on Cu(InAl)Se2 thin films and the fabrication of Cu(InAl)Se2 based thin film solar cells. J. Mater. Sci.: Mater. Electron. 25, 4404–4411 (2014)

    CAS  Google Scholar 

  19. N.J.N. Kamoun Allouche, C. Guasch, N. Kamoun Turki, Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates. J. Alloys Compd. 501, 85–88 (2010)

    Article  CAS  Google Scholar 

  20. F.A. Mahmoud, M. Boshta, M.H. Sayed, Correlation between sprayed CuInSe2 thin films properties and deposition temperature. J. Mater. Sci.: Mater. Electron. 24, 448–451 (2013)

    CAS  Google Scholar 

  21. M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci.: Mater. Electron. 18, 15–19 (2007)

    Google Scholar 

  22. Z.W. Jin Leng, J. Wang, H.-H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, Z. Guo, Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48, 3015–3073 (2019)

    Article  Google Scholar 

  23. M.A.N. Sebaa, A. Djelloul, A. Abderrahmane, T. Sahraoui, Effect of increasing concentrations on sprayed Cu2ZnSnS4 thin films. J. Nano Electron. Phys. 11, 05009–05014 (2019)

    Article  CAS  Google Scholar 

  24. J.R.M.S. Palanichamy, K. Deva Arun Kumar, M. Anitha, S. Pandiarajan, L. Amalraj, Effect of molar concentration on physical properties of spray deposited SnO2 thin films using nebulizer. J. Sol-Gel Sci. Technol. 89, 392–402 (2019)

    Article  CAS  Google Scholar 

  25. K.T.C. ElhamMazalan, N. Nayan, J. Ali, Influence of antimony dopant on CuIn(S, Se)2 solar thin absorber layer deposited via solution-processed route. J. Alloys Compd. 772, 710–718 (2019)

    Article  CAS  Google Scholar 

  26. A. Kotbi, B. Hartiti, S. Fadili, Copper indium gallium disulphide (CuInGaS2) thin films deposited by spray pyrolysis for solar cells: influence of deposition time in controlling properties of sprayed CuInGaS2 absorbers. Opt. Quant. Electron. 48, 524 (2016)

    Article  CAS  Google Scholar 

  27. M. Kruszynska, H. Borchert, J. Parisi, J. Kolny-Olesiak, Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals. J. Nanopart. Res. 13, 5815–5824 (2011)

    Article  CAS  Google Scholar 

  28. M. Baneto, A. Enesca, C. Mihoreanu, Y. Lare, K. Jondo, K. Napo, A. Duta, Effects of the growth temperature on the properties of spray deposited CuInS2 thin films for photovoltaic applications. Ceram. Int. 41, 4742–4749 (2015)

    Article  CAS  Google Scholar 

  29. M. Wang, M.A. Hossain, K.L. Choy, Effect of sodium treatment on the performance of electrostatic spray assisted vapour deposited copper poor Cu(In, Ga)(S, Se)2 solar cells. Sci. Rep. 7, 6788 (2017)

    Article  CAS  Google Scholar 

  30. L.C. Rongfeng Guan, Q. Sun, Y. Cao, Effects of preparation conditions on the CuInS2 films prepared by one-step electrodeposition method. J. Nanomater. (2015). https://doi.org/10.1155/2015/678929

    Article  Google Scholar 

  31. S.W. Shin, J.H. Han, J.Y. Lee, Y.C. Park, G.L. Agawane, A.V. Moholkar, M.G. Gang, C.H. Jeong, J.H. Kim, J.H. Yun, Study on the effects of different sulfur vaporization temperature on the properties of CuInS2 thin films. Appl. Surf. Sci. 270, 572–577 (2013)

    Article  CAS  Google Scholar 

  32. Y. Lai, S. Kuang, F. Liu, Z. Yuan, Z. Zhang, Y. Li, J. Liu, B. Wang, D. Tang, J. Li, Y. Liu, Effects of Cu/In ratio of electrodeposited precursor on post-sulfurization process in fabricating quaternary CuIn(S, Se)2 thin films. Appl. Surf. Sci. 257, 8360–8365 (2011)

    Article  CAS  Google Scholar 

  33. M.A. Zeineb Seboui, N. Jebbari, N.K. Turki, Effect of spray solution flow rate on the physical properties of CuInS2. Eur. Phys. J. Appl. Phys. 62, 30302–30310 (2013)

    Article  CAS  Google Scholar 

  34. N.D.S. Erkan Aydin, Ultrasonic spray deposition of CuInS2 absorber thin films: effect of nozzle frequency. J. Optoelectron. Adv. Mater. 15, 14–21 (2013)

    Google Scholar 

  35. S.Y. Kim, M.S. Mina, J. Lee, J.H. Kim, Sulfur alloying effects on Cu(In, Ga)(S, Se)2 solar cell fabricated by using aqueous spray pyrolysis. ACS Appl. Mater. Interfaces 11, 45702–45708 (2019)

    Article  CAS  Google Scholar 

  36. A.AAa.S.M.M. Salman, Influence of Cu/In ratios and the growth temperature on the microstructural parameters of sprayed CuInSe2 thin films. Int. J. Adv. Res. 6, 1450–1461 (2018)

    Article  Google Scholar 

  37. P. Viebahn, O. Soukup, S. Samadi, Characterization of spray pyrolysed CuInS2 thin films. Open Surf. Sci. J. 1, 1–6 (2009)

    Article  CAS  Google Scholar 

  38. J.C. Ho, T. Zhang, K.K. Lee, S.K. Batabyal, A.I. Tok, L.H. Wong, Spray pyrolysis of CuIn(S, Se)2 solar cells with 5.9% efficiency: a method to prevent Mo oxidation in ambient atmosphere. ACS Appl. Mater. Interfaces 6, 6638–6643 (2014)

    Article  CAS  Google Scholar 

  39. W. Kogler, T. Schnabel, E. Ahlswede, M. Powalla, Material properties and growth mechanism of CuInSe2 prepared by H2Se treatment of metallic alloys. J. Mater. Sci.: Mater. Electron. 10, 469–474 (1999)

    Google Scholar 

  40. J. Wang, J. Zhu, L. Liao, Cu(In, Ga)Se2 thin films prepared from stacked precursors by post-selenization process. J. Mater. Sci.: Mater. Electron. 25, 1863–1867 (2014)

    CAS  Google Scholar 

  41. W. Kogler, T. Schnabel, E. Ahlswede, M. Powalla, Study on formation and characterization of CZTSSe-based absorber layer from a green solution based approach. Sol. Energy Mater. Sol. Cells 200, 109959 (2019)

    Article  CAS  Google Scholar 

  42. A. Ashour, Some physical properties of CuInSe2 thin films. J. Mater. Sci.: Mater. Electron. 17, 625–629 (2006)

    CAS  Google Scholar 

  43. K. Manikandan, Effect of molar concentration on structural, morphological and optical properties of CdS thin films obtained by SILAR method. Indian J. Pure Appl. Phys. (IJPAP) 52, 354–359 (2015)

    Google Scholar 

  44. Z.Y. Alami, M. Salem, M. Gaidi, J. Elkhamkhami, Effect of Zn concentration on structural and optical proprieties of ZnO thin films deposited by spray pyrolysis. Adv. Energy Int. J. (AEIJ) 2, 11–25 (2015)

    Article  Google Scholar 

  45. W. Liu, D.B. Mitzi, M. Yuan, A.J. Kellock, S.J. Chey, O. Gunawan, 12% efficiency CuIn(Se, S)2 photovoltaic device prepared using a hydrazine solution process. Chem. Mater. 22, 1010–1014 (2010)

    Article  CAS  Google Scholar 

  46. V. Deprédurand, D. Tanaka, Y. Aida, M. Carlberg, N. Fevre, S. Siebentritt, Current loss due to recombination in Cu-rich CuInSe2 solar cells. J. Appl. Phys. 115, 044503–044508 (2014)

    Article  CAS  Google Scholar 

  47. H.D. Shelke, A.C. Lokhande, J.H. Kim, C.D. Lokhande, Photoelectrochemical (PEC) studies on Cu2SnS3 (CTS) thin films deposited by chemical bath deposition method. J. Colloid Interface Sci. 506, 1–31 (2017)

    Article  CAS  Google Scholar 

  48. T. Karazehir, M. Ates, A.S. Sarac, Mott–Schottky and morphologic analysis of poly(pyrrole-N-propionic acid) in various electrolyte systems. Int. J. Electrochem. Sci. 10, 6146–6163 (2015)

    CAS  Google Scholar 

  49. P.A. Fernandes, P.M. Salomé, A.F. Sartori, J. Malaquias, A.F. Da Cunha, B.A. Schubert, J.C. González, G.M. Ribeiro, Effects of sulphurization time on Cu2ZnSnS4 absorbers and thin films solar cells obtained from metallic precursors. Sol. Energy Mater. Sol. Cells 115, 157–165 (2013)

    Article  CAS  Google Scholar 

  50. M.H. Valdés, M. Vázquez, Pulsed electrodeposition of p-type CuInSe2 thin films. Electrochim. Acta 56, 6866–6873 (2011)

    Article  CAS  Google Scholar 

  51. J.P. Sawant Sawanta, R.B. Kaleb, Chemical spray pyrolysis of copper indium disulphide thin films for solar cell application: review. Int. J. Eng. Res. Gen. Sci. 3, 533–543 (2015)

    Google Scholar 

  52. S. Siebentritt, Chalcopyrite compound semiconductors for thin film solar cells. Curr. Opin. Green Sustain. Chem. 4, 1–7 (2017)

    Article  Google Scholar 

  53. M.M. El-Nahass, A.A. Attia, H.A.M. Ali, Electrical transport properties of thermally evaporated phthalocyanine (H2Pc) thin films. Appl. Surf. Sci. 252, 7553–7561 (2006)

    Article  CAS  Google Scholar 

  54. N. Winkler, S. Edinger, J. Kaur, R.A. Wibowo, W. Kautek, T. Dimopoulos, Solution-processed all-oxide solar cell based on electrodeposited Cu2O and ZnMgO by spray pyrolysis. J. Mater. Sci. 53, 12231–12243 (2018)

    Article  CAS  Google Scholar 

  55. L. Djellal, A. Bouguelia, M. Trari, Physical and photoelectrochemical properties of p-CuInSe2 bulk material. Mater. Chem. Phys. 109, 99–104 (2008)

    Article  CAS  Google Scholar 

  56. A. Rockett, CuInSe2 for photovoltaic applications. J. Appl. Phys. 70, R81-97 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the Research Council and the Center of Excellence for Nanostructures of the Sharif University of Technology, Tehran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Mohammad Bagher Ghorashi, Fariba Tajabadi or Nima Taghavinia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Ghorashi, S.M.B., Tajabadi, F. et al. Investigation of precursors concentration in spray solution on the optoelectronic properties of CuInSe2 thin films deposited by spray pyrolysis method. J Mater Sci: Mater Electron 32, 25748–25757 (2021). https://doi.org/10.1007/s10854-020-04570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04570-6

Navigation