Skip to main content
Log in

Effect of molar concentration on physical properties of spraydeposited SnO2 thin films using nebulizer

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present paper, tin dioxide (SnO2) thin films had been fabricated with different precursor concentration in the range of 0.01–0.09 M onto amorphous glass substrates utilizing nebulizer spray method. The effect of precursor concentration on electrical, morphological, structural, optical, and photoluminescence properties has been investigated. XRD spectrum revealed that the polycrystalline nature of SnO2 thin films with tetragonal structure in the range of precursor concentration 0.03–0.09 M, which are having a favorable growth orientation along (110) direction. The estimated average crystallite size varied between 22 and 53 nm. UV-Visible spectrum exposes the transmittance of SnO2 thin films lies between 90 and 78% in the visible range. The direct band gap energy reduced from 3.83 to 3.71 eV on increasing precursor concentration upto 0.07 M and then it was further increased. Photoluminescence spectra at room temperature exhibited a strong peak at 362 nm with shoulder peak at 376 nm and two broad peaks are 493 nm and 518 nm. SEM analysis illustrated that the polyhedron-like grains were homogeneously arranged over the film surface. The film prepared at 0.07 M precursor concentration shows the least resistivity 2.41 × 10−3 Ω-cm and good figure of merit 16.41 × 10−3 (Ω/sq)−1.

Highlights

  • SnO2 thin films were deposited with different precursor concentration (0.01–0.09 M) using nebulized spray pyrolysis (NSP) technique.

  • Crystallite size in the range of 22–53 nm.

  • Transmittance decreased from 90 to 78% in the visible region.

  • Minimum electrical resistivity 2.41 × 10−3 Ω-cm obtained at 0.07 M precursor concentration.

  • Highest figure of merit is found to be 16.41 × 10−3 (Ω/sq)−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Godbole VP, Vispute RD, Chaudhari SM, Kanetkar SM, Ogale SB (1990) J Mater Res 5:372–377

    Article  Google Scholar 

  2. Phillips HM, Li Y, Bi Z, Zhang B (1996) Appl Phys A 63:347–351

    Article  Google Scholar 

  3. Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG (2002) Thin Solid Films 419:230–236

    Article  Google Scholar 

  4. Bagheri-Mohagheghi MM, Shokooh-Saremi M (2010) Phys B Condens Matter 405:4205–4210

    Article  Google Scholar 

  5. Park JH, Lee JH (2009) Sens Actuators B 136:151–157

    Article  Google Scholar 

  6. Pusawale SN, Deshmukh PR, Lokhande CD (2011) Appl Surf Sci 257:9498–9502

    Article  Google Scholar 

  7. Zhang Y, Liu Y (2006) Chem Mater 18:4643–4646

    Article  Google Scholar 

  8. Vaufrey D, Ben khalifa M, Besland MP, Sandu C, Balanchin MG, Teodorescu V (2002) Synth Met 127:207–211

    Article  Google Scholar 

  9. Zaouk D, Zaatar Y, Khoury A, Llinares C, Charles JP, Bechara J (2000) Microelectron Eng 51-52:627–631

    Article  Google Scholar 

  10. Kumar KDA, Valanarasu S, Kathalingam A, Jeyadheepan K (2018) Mater Res Bull 101:264–271

    Article  Google Scholar 

  11. Seo J, Kim GW, Sung CH, Anwar MS, Lee CG, Koo BH (2011) Curr Appl Phys 11:S310–S313

    Article  Google Scholar 

  12. Ebrahimiasl S, Yunus WMZW, Kassim A, Zainal Z (2011) Sensors 11:9207–9216

    Article  Google Scholar 

  13. Zdenek M, Remes, Vanecek HM, Yates P, Evans DW (2009) Thin Solid Films 517:6287–6289

    Article  Google Scholar 

  14. Gnanam S, Rajendran V (2010) J Sol-Gel Sci Tech 56:128–133

    Article  Google Scholar 

  15. Boyali E, Baran V, Asar T, Ozcelik S, Kasap M (2017) J Alloy Compd 692:119–123

    Article  Google Scholar 

  16. Anitha N, Anitha M, Saravanakumar K, Valanarasu S (2018) J Phys Chem Solids 119:9–18

    Article  Google Scholar 

  17. Anitha M, Amalraj L, Anitha N (2017) Appl Phys A 123:764

    Article  Google Scholar 

  18. Thirumoorthi M, Prakash JTJ (2016) Superlattices Microstruct 89:378–389

    Article  Google Scholar 

  19. Chiad SS, Oboudi SF, Mohamed GH, Habubi NF (2014) PCAIJ 9(6):189–194

    Google Scholar 

  20. Abdelkrim A, Rahmane S, Abdelouahab O, Abdelmalek N, Brahim G (2016) Optik 127:2653–2658

    Article  Google Scholar 

  21. Mariappan R, Ponnuswamy V, Suresh P (2013) Mater Sci Semicond Process 16:825–832

    Article  Google Scholar 

  22. Kumar KDA, Valanarasu S, Tamilnayagam V, Amalraj L (2017) J Mater Sci Mater Electron 28:14209–14216

    Article  Google Scholar 

  23. Sankar C, Ponnuswamy V, Manickam M, Mariappan R, Suresh R (2015) Appl Surface Sci 349:931–939

    Article  Google Scholar 

  24. Perednis D, Gauckler LJ (2005) J Elect Ceram 14(2):103–111

    Google Scholar 

  25. Lokhande BJ, Patil PS, Uplane MD (2004) Mater Chem Phys 84:238–242

    Article  Google Scholar 

  26. Benhaoua B, Abbas S, Rahal A, Benhaoua A, Aida MS (2015) Superlattices Microstruct 83:78–88

    Article  Google Scholar 

  27. Sakhare RD, Khuspe GD, Navale ST, Mulik RN, Chougule MA, Pawar RC, Lee CS, Shashwati Sen, Patil VB (2013) J Alloy Compd 563:300–306

    Article  Google Scholar 

  28. Patil LA, Suryawanshi DN, Pathan IG, Patil DG (2013) Bull Mater Sci 36(7):1153–1160

    Article  Google Scholar 

  29. Turgut G, Keskenler EF, Aydın S, Sonmez E, Dog˘an S, Duzgun B, Ertug˘rul M (2010) Superlattices Microstruct 56:107–116

    Article  Google Scholar 

  30. Paloly A R, Satheesh M, Carmen Martinez-Tomas M, Munoz- Sanjose V, Achary S R, Junaid Bushiri M (2015) Appl Surf Sci 357:915–921

    Article  Google Scholar 

  31. Rahal A, Benhaoua A, Jlassi M, Benhaoua B (2015) Superlattices Microstruct 86:403–411

    Article  Google Scholar 

  32. Suresh R, Ponnuswamy V, Mariappan R, Senthilkumar N (2014) Ceram Int 40:437–445

    Article  Google Scholar 

  33. Mariappan R, Ponnuswamy V, Suresh P, Ashok N, jayamurugan P, Chandra Bose A (2014) Superlattices Microstruct 71:238–249

    Article  Google Scholar 

  34. Raj Mohamed J, Sanjeeviraja C, Amalraj L (2016) J Mater Sci Mater Electron 27:4437–4446

    Article  Google Scholar 

  35. Khelifi Chafia, Attaf Abdallah, Saidi Hanane, Yahia Anouar, Dahnoun Mohamed, Saadi Abdelhakim (2016) Optik 127:11055–11062

    Article  Google Scholar 

  36. Lu YM, Jiang J, Xia C, Kramm B, Polity A, He YB, Klar PJ, Meyer BK (2015) Thin Solid Films 594:270–276

    Article  Google Scholar 

  37. Mrabet C, Boukhachem A, Amlouk M, Manoubi T (2016) J Alloy Compd 666:392–405

    Article  Google Scholar 

  38. Kumar KDA, Valanarasu S, Ganesh V, Shkir Mohd, AlFaify, Algarni H (2018) J Mater Res 33:1523–1533

    Article  Google Scholar 

  39. Kumar KDA, Ganesh V, Valanarasu S, Shkir M, Kulandaisamy I, Kathalingam A, AlFaify S (2018) Mater Chem Phys 212:167–174

    Article  Google Scholar 

  40. Jeong J, Choi SP, Chang CI, Shin DC, Park JS, Lee BT, Park YJ, Song HJ (2003) Solid State Commun 127:595–597

    Article  Google Scholar 

  41. Mariammal RN, Rajamanickam N, Ramachandran K (2011) J Nano-Electron Phys 3:92–100

    Google Scholar 

  42. Mitra A, Thareja RK (2001) J Appl Phys 89:2025–2028

    Article  Google Scholar 

  43. Babar AR, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2011) J Alloy Compd 509:3108–3115

    Article  Google Scholar 

  44. Ergin B, Ketenci E, Atay F (2009) Int J Hydrog Energy 34:5249–5254

    Article  Google Scholar 

  45. Tran Q-P, Fang J-S, Chin T-S (2015) Mater Sci Semicond Process 40:664–669

    Article  Google Scholar 

  46. Deepu DR, Sudha Kartha C, Vijayakumar KP (2016) J Anal Appl Pyrolysis 121:24–28

    Article  Google Scholar 

  47. Prathap P, Subbaiah YPV, Ramakrishna Reddy KT (2007) J Phys D Appl Phys 40:5275–5282

    Article  Google Scholar 

  48. Anand V, Sakthivelu A, Kumar KDA, Valanarasu S, Kathalingam A, Ganesh V, Shkire M, AlFaify S (2018) I S Yahia Ceram Inter 44:6730–6738

    Article  Google Scholar 

  49. Devika M, Koteeswara Reddy N, Ramesh K, Gunasekhar KR, Gopal ESR, Reddy KTR (2006) Semicond Sci Technol 21:1125–1131

    Article  Google Scholar 

  50. Kumar KDA, Valanarasu S, Jeyadheepan K, Kim H-S, Vikraman D (2018) J Mater Sci Mater Electron 29:3648–3656

    Article  Google Scholar 

  51. Joshi BN, Yoon H, Yoon SS (2013) J Electro 71:48–52

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. R. Ramesh Babu, Assistant Professor, Department of Physics, Bharathidasan University, Tiruchirappalli, India for analyzing the electrical characterization using Hall measurement instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Amalraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanichamy, S., Mohamed, J.R., Kumar, K.D.A. et al. Effect of molar concentration on physical properties of spraydeposited SnO2 thin films using nebulizer. J Sol-Gel Sci Technol 89, 392–402 (2019). https://doi.org/10.1007/s10971-018-4894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4894-5

Keywords

Navigation