Skip to main content

Advertisement

Log in

Structural, optical, and dielectric investigations in bulk PrCrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline powder samples of PrCrO3 have been prepared using conventional solid-state synthesis method. Structural investigations are carried out using Raman spectroscopy and synchrotron X-ray diffraction (SXRD) followed by Rietveld refinement of diffraction data. Investigations of diffraction data suggest that these samples possess centrosymmetric orthorhombic structure with space group \(Pnma\) \((or\;Pbnm)\). The valence (charge) state of Cr in PrCrO3 has been determined from X-ray absorption near edge spectroscopy (XANES). Optical properties are studied using diffuse reflectance spectroscopy technique. Optical absorption study reveals that absorption in PrCrO3 ceramic is dominated by d–d electrons of chromium cation (Cr3+). The synthesized compound found to have energy bandgap of 3.20 eV. Based on the results observed, energy level diagram for PrCrO3 has been presented. High dielectric permittivity \((\varepsilon {^{\prime}})\) of the order \(3\times {10}^{3}\) is observed for the studied sample. Impedance spectroscopy measurement at room temperature on sintered pellet indicates electronic inhomogeneity in the samples as demonstrated by the presence of dielectric relaxation processes associated with highly conducting grain and low conducting grain boundaries. The relaxation mechanism has been explained on the basis of Cole–Cole model. Observed high dielectric permittivity \((\varepsilon {^{\prime}})\) and optical energy bandgap \(({E}_{g})\) indicates that PrCrO3 may find promising application in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Durán, E. Morán, M.A. Alario-Franco, C. Ostos, Biferroic LuCrO3: Structural characterization, magnetic and dielectric properties. Mater. Chem. Phys. 143, 1222–1227 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.026

    Article  CAS  Google Scholar 

  2. Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, A novel multiferroic system: rare earth chromates. J. Appl. Phys. 107, 09D905 (2010). https://doi.org/10.1063/1.3360358

    Article  CAS  Google Scholar 

  3. A. Indra, K. Dey, A. Midya, P. Mandal, O. Gutowski, U. Rütt, S. Majumdar, S. Giri, Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3. J. Phys.: Condens. Matter. 28, 166005 (2016). https://doi.org/10.1088/0953-8984/28/16/166005

    Article  CAS  Google Scholar 

  4. J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmare, C.N.R. Rao, Rare earth chromites: a new family of multiferroics. J. Mater. Chem. 17, 42–44 (2007). https://doi.org/10.1039/B612093H

    Article  CAS  Google Scholar 

  5. C.R. Serrao, A.K. Kundu, S.B. Krupanidhi, U.V. Waghmare, C.N.R. Rao, Biferroic YCrO3. Phys. Rev. B. 72, 220101 (2005). https://doi.org/10.1103/PhysRevB.72.220101

    Article  CAS  Google Scholar 

  6. M. Siemons, A. Leifert, U. Simon, Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Func. Mater. 17, 2189–2197 (2007). https://doi.org/10.1002/adfm.200600454

    Article  CAS  Google Scholar 

  7. M. Siemons, U. Simon, High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sens. Actuators B 126, 181–186 (2007). https://doi.org/10.1016/j.snb.2006.11.022

    Article  CAS  Google Scholar 

  8. L. Fkhar, A. Mahmoud, F. Boschini, M. Hamedoun, A. Benyoussef, E.-K. Hlil, M.A. Ali, O. Mounkachi, Structural, magnetic, and magnetocaloric properties in rare earth orthochromite (Sm, Nd, and La)CrO3 for cooling product. J. Supercond. Novel Magn. 33, 1023–1030 (2020). https://doi.org/10.1007/s10948-019-05260-z

    Article  CAS  Google Scholar 

  9. G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and -ferrites. Appl. Spectrosc. 24, 436–445 (1970). https://doi.org/10.1366/000370270774371426

    Article  CAS  Google Scholar 

  10. H.B. Lal, R.D. Dwivedi, K. Gaur, Pyroelectric and dielectric properties of some heavy rare-earth orthochromites. J. Mater. Sci: Mater. Electron. 7, 35–38 (1996). https://doi.org/10.1007/BF00194090

    Article  CAS  Google Scholar 

  11. H.B. Lal, R.D. Dwivedi, K. Gaur, Pyroelectric and dielectric properties of some light rare-earth orthochromites. J. Mater. Sci.: Mater. Electron. 1, 204–208 (1990). https://doi.org/10.1007/BF00696078

    Article  CAS  Google Scholar 

  12. L. Boudad, M. Taibi, A. Belayachi, M. Abd-Lefdil, Dielectric relaxation, electrical conductivity and optical studies of solid-state synthesized EuCrO3. J. Mater. Sci.: Mater. Electron. 31, 354–360 (2020). https://doi.org/10.1007/s10854-019-02533-0

    Article  CAS  Google Scholar 

  13. N. Zarrin, S. Husain, D.D. Gaur, A. Somvanshi, M. Fatema, Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3. J. Mater. Sci.: Mater. Electron. 31, 3466–3478 (2020). https://doi.org/10.1007/s10854-020-02894-x

    Article  CAS  Google Scholar 

  14. P. Luo, B. Zhang, Q. Zhao, D. He, A. Chang, Characterization and electrical conductivity of La1−xSrxCrO3 NTC ceramics. J. Mater. Sci.: Mater. Electron. 28, 9265–9271 (2017). https://doi.org/10.1007/s10854-017-6662-7

    Article  CAS  Google Scholar 

  15. A. Ghosh, A. Pal, K. Dey, S. Majumdar, S. Giri, Atypical multiferroicity of HoCrO3 in bulk and film geometry. J. Mater. Chem. C 3, 4162–4167 (2015). https://doi.org/10.1039/C5TC00269A

    Article  CAS  Google Scholar 

  16. B. Dalal, B. Sarkar, S. Rayaprol, M. Das, V. Siruguri, P. Mandal, S.K. De, Unveiling ferrimagnetic ground state, anomalous behavior of the exchange-bias field around spin reorientation, and magnetoelectric coupling in YbCr1-xFexO3 (0<x<0.6). Phys. Rev. B 101, 144418 (2020). https://doi.org/10.1103/PhysRevB.101.144418

    Article  CAS  Google Scholar 

  17. S. Mahana, B. Rakshit, R. Basu, S. Dhara, B. Joseph, U. Manju, S.D. Mahanti, D. Topwal, Local inversion symmetry breaking and spin-phonon coupling in the perovskite GdCrO3. Phys. Rev. B 96, 104106 (2017). https://doi.org/10.1103/PhysRevB.96.104106

    Article  Google Scholar 

  18. R. Late, H.M. Rai, S.K. Saxena, R. Kumar, A. Sagdeo, P.R. Sagdeo, Probing structural distortions in rare earth chromites using Indian synchrotron radiation source. Indian J. Phys. 90, 1347–1354 (2016). https://doi.org/10.1007/s12648-016-0887-9

    Article  CAS  Google Scholar 

  19. S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review. Ceram. Int. 22, 257–265 (1996). https://doi.org/10.1016/0272-8842(95)00101-8

    Article  CAS  Google Scholar 

  20. P.S. Devi, A.D. Sharma, H.S. Maiti, Solid oxide fuel cell materials: a review. Trans. Indian Ceram. Soc. 63, 75–98 (2004). https://doi.org/10.1080/0371750X.2004.11012140

    Article  CAS  Google Scholar 

  21. P. Wei, I. Zhitomirsky, A. Petric, Electrolytic deposition of oxide coatings for solid oxide fuel cell interconnects, Proceedings of the electrochemical society (The Electrochemical Society, Pennington, 2005)

    Google Scholar 

  22. V.S. Bagotsky, Fuel cells: problems and solutions (Wiley, Hoboken, 2012)

    Google Scholar 

  23. J.W. Fergus, Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ion. 171, 1–15 (2004). https://doi.org/10.1016/j.ssi.2004.04.010

    Article  CAS  Google Scholar 

  24. B.V. Prasad, G.N. Rao, J.W. Chen, D.S. Babu, Relaxor ferroelectric like giant permittivity in PrCrO3 semiconductor ceramics. Mater. Chem. Phys. 126, 918–921 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.013

    Article  CAS  Google Scholar 

  25. R. Mguedla, A.B. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J. Alloys Compd. 812, 152130 (2020). https://doi.org/10.1016/j.jallcom.2019.152130

    Article  CAS  Google Scholar 

  26. J. Prado-Gonjal, R. Schmidt, J.-J. Romero, D. Ávila, U. Amador, E. Morán, Microwave-assisted synthesis, microstructure, and physical properties of rare-earth chromites. Inorg. Chem. 52, 313–320 (2013). https://doi.org/10.1021/ic302000j

    Article  CAS  Google Scholar 

  27. S. Kumar, I. Coondoo, M. Vasundhara, S. Kumar, A.L. Kholkin, N. Panwar, Structural, magnetic, magnetocaloric and specific heat investigations on Mn doped PrCrO3orthochromites. J. Phys.: Condens. Matter. 29, 195802 (2017). https://doi.org/10.1088/1361-648x/aa666c

    Article  CAS  Google Scholar 

  28. Y. Zhang, C. Yao, Y. Fan, M. Zhou, One-step hydrothermal synthesis, characterization and magnetic properties of orthorhombic PrCrO3 cubic particles. Mater. Res. Bull. 59, 387–393 (2014). https://doi.org/10.1016/j.materresbull.2014.07.049

    Article  CAS  Google Scholar 

  29. R. Late, K.V. Wagaskar, S.I. Patil, P.B. Shelke, P.R. Sagdeo, Effect of bismuth doping on optical properties of polycrystalline PrCrO3. AIP Conf. Proc. 2220, 040017 (2020). https://doi.org/10.1063/5.0002651

    Article  CAS  Google Scholar 

  30. J. Yang, X. Zhu, H. Wang, X. Wang, C. Hao, R. Fan, D. Dastan, Z. Shi, Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Composites A 131, 105814 (2020). https://doi.org/10.1016/j.compositesa.2020.105814

    Article  CAS  Google Scholar 

  31. L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A 8, 5750–5757 (2020). https://doi.org/10.1039/D0TA00903B

    Article  CAS  Google Scholar 

  32. L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, R. Fan, Layer-structured BaTiO3/P(VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC01801E

    Article  Google Scholar 

  33. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Composites A 125, 105521 (2019). https://doi.org/10.1016/j.compositesa.2019.105521

    Article  CAS  Google Scholar 

  34. D. Dastan, A. Banpurkar, Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci.: Mater. Electron. 28, 3851–3859 (2017). https://doi.org/10.1007/s10854-016-5997-9

    Article  CAS  Google Scholar 

  35. R. Shakoury, A. Arman, Ş. Ţălu, D. Dastan, C. Luna, S. Rezaee, Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted. Opt. Quant. Electron. 52, 270 (2020). https://doi.org/10.1007/s11082-020-02388-4

    Article  CAS  Google Scholar 

  36. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.-T. Yin, W.-D. Zhou, H. Garmestani, Ş. Ţălu, Ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces 18, 100463 (2020). https://doi.org/10.1016/j.surfin.2020.100463

    Article  CAS  Google Scholar 

  37. D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci.: Mater. Electron. 28, 7784–7796 (2017). https://doi.org/10.1007/s10854-017-6474-9

    Article  CAS  Google Scholar 

  38. R. Late, H.M. Rai, S.K. Saxena, R. Kumar, A. Sagdeo, P.R. Sagdeo, Effect of Hf doping on the structural, dielectric and optical properties of CaCu3Ti4O12 ceramic. J. Mater. Sci.: Mater. Electron. 27, 5878–5885 (2016). https://doi.org/10.1007/s10854-016-4505-6

    Article  CAS  Google Scholar 

  39. V. Mishra, A. Sagdeo, V. Kumar, M.K. Warshi, H.M. Rai, S.K. Saxena, D.R. Roy, V. Mishra, R. Kumar, P.R. Sagdeo, Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: an experimental and theoretical investigation. J. Appl. Phys. 122, 065105 (2017). https://doi.org/10.1063/1.4997939

    Article  CAS  Google Scholar 

  40. A. Kumar, V. Mishra, M.K. Warshi, A. Sati, A. Sagdeo, R. Kumar, P.R. Sagdeo, Strain induced disordered phonon modes in Cr doped PrFeO3. J. Phys.: Condens. Matter 31, 275602 (2019). https://doi.org/10.1088/1361-648x/ab1195

    Article  CAS  Google Scholar 

  41. V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kumar, P.R. Sagdeo, Diffuse reflectance spectroscopy: an effective tool to probe the defect states in wide band gap semiconducting materials. Mater. Sci. Semicond. Process. 86, 151–156 (2018). https://doi.org/10.1016/j.mssp.2018.06.025

    Article  CAS  Google Scholar 

  42. A. Kumar, M.K. Warshi, V. Mishra, S.K. Saxena, R. Kumar, P.R. Sagdeo, Strain control of Urbach energy in Cr-doped PrFeO3. Appl. Phys. A 123, 576 (2017). https://doi.org/10.1007/s00339-017-1186-9

    Article  CAS  Google Scholar 

  43. W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting. J. Alloys Compd. 818, 152933 (2020). https://doi.org/10.1016/j.jallcom.2019.152933

    Article  CAS  Google Scholar 

  44. K. Shan, Z.-Z. Yi, X.-T. Yin, D. Dastan, H. Garmestani, Conductivity and mixed conductivity of a novel dense diffusion barrier and the sensing properties of limiting current oxygen sensors. Dalton Trans. 49, 6682–6692 (2020). https://doi.org/10.1039/D0DT00496K

    Article  CAS  Google Scholar 

  45. K. Shan, Z.-Z. Yi, X.-T. Yin, D. Dastan, H. Garmestani, Y-doped CaZrO3/Co3O4 as novel dense diffusion barrier materials for a limiting current oxygen sensor. Dalton Trans. 49, 8549–8556 (2020). https://doi.org/10.1039/D0DT01159B

    Article  CAS  Google Scholar 

  46. D.B. Wiles, R.A. Young, A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Crystallogr. 14, 149–151 (1981). https://doi.org/10.1107/S0021889881008996

    Article  CAS  Google Scholar 

  47. K. Momma, F. Izumi, VESTA for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  48. R. Late, H.M. Rai, S.K. Saxena, R. Kumar, P.R. Sagdeo, Effect of hafnium substitution on the dielectric properties of CaCu3Ti4O12. AIP Conf. Proc. (2015). https://doi.org/10.1063/1.4918228

    Article  Google Scholar 

  49. H.M. Rai, R. Late, S.K. Saxena, V. Mishra, R. Kumar, P.R. Sagdeo, A. Sagdeo, Room temperature magnetodielectric studies on Mn-doped LaGaO3. Mater. Res. Exp. 2, 096105 (2015). https://doi.org/10.1088/2053-1591/2/9/096105

    Article  CAS  Google Scholar 

  50. H.M. Rai, S.K. Saxena, R. Late, V. Mishra, P. Rajput, A. Sagdeo, R. Kumar, P.R. Sagdeo, Observation of large dielectric permittivity and dielectric relaxation phenomenon in Mn-doped lanthanum gallate. RSC Adv. 6, 26621–26629 (2016). https://doi.org/10.1039/C5RA28074E

    Article  CAS  Google Scholar 

  51. S. Basu, C. Nayak, A.K. Yadav, A. Agrawal, A.K. Poswal, D. Bhattacharyya, S.N. Jha, N.K. Sahoo, A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT Indore, India. J. Phys. 493, 012032 (2014). https://doi.org/10.1088/1742-6596/493/1/012032

    Article  Google Scholar 

  52. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60, 3548–3552 (2006). https://doi.org/10.1016/j.matlet.2006.03.055

    Article  CAS  Google Scholar 

  53. A. Kumar, S. Umrao, P.R. Sagdeo, Orbital facilitated charge transfer originated phonon mode in Cr-substituted PrFeO3: a brief Raman study. J. Raman Spectrosc. (2020). https://doi.org/10.1002/jrs.5894

    Article  Google Scholar 

  54. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R=Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012). https://doi.org/10.1103/PhysRevB.85.054303

    Article  CAS  Google Scholar 

  55. P. Gupta, P. Poddar, Using Raman and dielectric spectroscopy to elucidate the spin phonon and magnetoelectric coupling in DyCrO3 nanoplatelets. RSC Adv. 5, 10094–10101 (2015). https://doi.org/10.1039/C4RA11022F

    Article  CAS  Google Scholar 

  56. P.S.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Appl. Phys. Lett. 103, 022910 (2013). https://doi.org/10.1063/1.4813539

    Article  CAS  Google Scholar 

  57. R. Mguedla, A.B. Kharrat, O. Taktak, H. Souissi, S. Kammoun, K. Khirouni, W. Boujelben, Experimental and theoretical investigations on optical properties of multiferroic PrCrO3 ortho-chromite compound. Opt. Mater. 101, 109742 (2020). https://doi.org/10.1016/j.optmat.2020.109742

    Article  CAS  Google Scholar 

  58. B. Tiwari, M.K. Surendra, M.S. Ramachandra Rao, HoCrO3 and YCrO3: a comparative study. J. Phys. 25, 216004 (2013). https://doi.org/10.1088/0953-8984/25/21/216004

    Article  CAS  Google Scholar 

  59. K. Ikeda, H. Schneider, M. Akasaka, H. Rager, Crystal-field spectroscopic study of Cr-doped mullite. Am. Miner. 77, 251–257 (1992)

    CAS  Google Scholar 

  60. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 112, 114115 (2012). https://doi.org/10.1063/1.4768468

    Article  CAS  Google Scholar 

  61. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.03.040

    Article  CAS  Google Scholar 

  62. G.G. Raju, Dielectrics in electric fields (CRC Press, Boca Raton, 2003)

    Google Scholar 

  63. J.R. Macdonald, Theory of space-charge polarization and electrode-discharge effects. J. Chem. Phys. 58, 4982–5001 (1973). https://doi.org/10.1063/1.1679086

    Article  CAS  Google Scholar 

  64. W.-D. Li, S.Y. Chou, Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express 18, 931–937 (2010). https://doi.org/10.1364/OE.18.000931

    Article  CAS  Google Scholar 

  65. Y. Zou, Y. Zhang, Y. Hu, H. Gu, Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review. Sensors (2018). https://doi.org/10.3390/s18072072

    Article  Google Scholar 

Download references

Acknowledgements

SIC IIT Indore is acknowledged for providing experimental facilities for FE-SEM. Prof. Ravikiran Late would like to thank Dr. R. J. Barnabas, Principal, Ahmednagar College, Ahmednagar for his support. Authors also thank Dr. N. B. Chaure and Dr. Rajashri Urkude for valuable discussion. We also acknowledge Raja Ramanna Center for Advance Technology (RRCAT) Indore for providing synchrotron radiation facilities. Authors are grateful to Dr. A. K. Sinha, Mr. Anuj Upadhyay and Mr. Manvendra N. Singh for their help during x-ray diffraction measurements. Dr. S. N. Jha is acknowledged for XANES measurements. The authors acknowledge DST-FIST (SR/FST/PSI-225/2016) for providing funding for Raman spectrometer used in the measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravikiran Late or Pankaj R. Sagdeo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Late, R., Wagaskar, K.V., Shelke, P.B. et al. Structural, optical, and dielectric investigations in bulk PrCrO3. J Mater Sci: Mater Electron 31, 16379–16388 (2020). https://doi.org/10.1007/s10854-020-04189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04189-7

Navigation