Skip to main content
Log in

Structural, Magnetic, and Magnetocaloric Properties in Rare Earth Orthochromite (Sm, Nd, and La)CrO3 for Cooling Product

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polycrystalline phase of SmCrO3, NdCrO3, and LaCrO3 orthochromites was synthetized with solid-state reaction method. The pure orthorhombic phases with space group Pnma have been confirmed by X-ray diffraction. In addition, the FTIR spectroscopy proved the formation Sm–O, Nd–O, and La–O bonds in SmCrO3, NdCrO3, and LaCrO3 respectively, and Cr–O and Cr–O–Cr bonds in all our samples. The particles morphology and composition results were obtained using the scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The Quantum Design XL-SQUID magnetometer is used in order to determine the magnetic transition type and transition temperature for each sample. We found that our samples exhibit a transition at 195 K, 65 K, and 35 K for SmCrO3, NdCrO3, and LaCrO3 respectively. The magnetic entropy change (∆Sm), as the key parameter to evaluate the magnetocaloric effect, is calculated. Our samples present a ∆Sm in the range of 0.11 and 0.25 J kg−1 K−1 for an external magnetic field of 5 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao, Y., Cao, S., Ren, W., Feng, Z., Yuan, S., Kang, B., Lu, B., Zhang, J., Cao, Y., Cao, S., Ren, W., Feng, Z., Yuan, S., Kang, B.: Magnetization switching of rare earth orthochromite CeCrO3. 232405, 1–5 (2014). https://doi.org/10.1063/1.4882642

  2. Yoshii, K.: Magnetic properties of perovskite GdCrO3. 208, 204–208 (2001). https://doi.org/10.1006/jssc.2000.9152

  3. Bora, T., Ravi, S.: Effect of Ce doping on the magnetic properties of LaCrO3. Phys. B Condens. Matter. 448, 233–236 (2014). https://doi.org/10.1016/j.physb.2014.03.044

    Article  ADS  Google Scholar 

  4. Vittal, B., Rao, G.N., Chen, J.W., Babu, D.S.: Relaxor ferroelectric like giant permittivity in PrCrO3 semiconductor ceramics. Mater. Chem. Phys. 126, 918–921 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.013

    Article  Google Scholar 

  5. Wang, Y., Zhu, J., Yang, X., Lu, L., Wang, X.: Preparation of NdCrO3 nanoparticles nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS. Thermochim. Acta. 437, 106–109 (2005). https://doi.org/10.1016/j.tca.2005.06.027

    Article  Google Scholar 

  6. Deng, G., Chen, Y., Tao, M., Wu, C., Shen, X., Yang, H., Liu, M.: Study of the electrochemical hydrogen storage properties of the proton-conductive perovskite-type oxide LaCrO3 as negative electrode for Ni/MH batteries. Electrochim. Acta. 55, 884–886 (2010). https://doi.org/10.1016/j.electacta.2009.06.071

    Article  Google Scholar 

  7. abdel all Ibrahim, S.M.: Hydrogen storage in proton-conductive perovskite-type oxides and their application. Korean J. Chem. Eng. 31, 1792–1797 (2014). https://doi.org/10.1007/s11814-014-0081-8

    Article  Google Scholar 

  8. Yin, S., Jain, M.: Enhancement in magnetocaloric properties of holmium chromite by gadolinium substitution. 43906, (2016). https://doi.org/10.1063/1.4959253

  9. Saha, S., Chanda, S., Dutta, A.: Dielectric relaxation and phonon modes of NdCrO3 nanostructure. 553–563 (2014). https://doi.org/10.1007/s10971-013-3256-6

  10. Pr, L., Yoshii, K., Nakamura, A., Yoshii K., Nakamura, A.: 450 (2000) 447–450. https://doi.org/10.1006/jssc.2000.8943.

  11. Jiang, S.P., He, T., Shen, Y., Liu, M.: Preparation, electrical conductivity, and thermal expansion behavior of dense Nd1-xCaxCrO3 solid solutions. 2264, 2259–2264 (2009). https://doi.org/10.1111/j.1551-2916.2009.03196.x

  12. Zhang, Y., Yao, C., Fan, Y., Zhou, M.: One-step hydrothermal synthesis, characterization and magnetic properties of orthorhombic PrCrO3 cubic particles, Elsevier Ltd. 59, 387–393 (2014). https://doi.org/10.1016/j.materresbull.2014.07.049

  13. Inagaki, M., Yamamoto, O., Hirohara, M.: Synthesis of LaCrO3 from complex precipitation and its electrical conductivity. J. Ceram. Soc. Jpn. 98, 675–678 (1990). https://doi.org/10.2109/jcersj.98.675

    Article  Google Scholar 

  14. Yin, L.H., Yang, J., Kan, X.C., Song, W.H., Dai, J.M., Sun, Y.P., Yin, L.H., Yang, J., Kan, X.C., Song, W.H., Dai, J.M., Sun, Y.P.: Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal. 133901, 0–8 (2015). https://doi.org/10.1063/1.4916701

  15. Kumar, S., Coondoo, I., Rao, A.: Impact of low level praseodymium substitution on the magnetic properties of YCrO3 orthochromites. Phys. B Condens. Matter. 510, 104 (2017). https://doi.org/10.1016/j.physb.2017.01.003

    Article  ADS  Google Scholar 

  16. Yoshii, K.: Magnetization reversal in TmCrO3. Mater. Res. Bull. 47, 3243–3248 (2012). https://doi.org/10.1016/j.materresbull.2012.08.005

    Article  Google Scholar 

  17. Yoshii, K., Nakamura, A., Ishii, Y., Morii, Y.: Magnetic properties of La1-xPRxCRO3. J. Solid State Chem. 162, 84–89 (2001). https://doi.org/10.1006/jssc.2001.9351

    Article  ADS  Google Scholar 

  18. Balli, M., Fruchart, D., Gignoux, D.: Optimization of La(Fe,Co)13-xSix based compounds for magnetic refrigeration. J. Phys. Condens. Matter. 19, 236230 (2007). https://doi.org/10.1088/0953-8984/19/23/236230

    Article  ADS  Google Scholar 

  19. Tegus, O., Dagula, O., Bruck, E., Zhang, L., de Boer, F.R., Buschow, K.H.J.: Magnetic and magneto-caloric properties of Tb5Ge2Si2. J. Appl. Phys. 91, 8534–8536 (2002). https://doi.org/10.1063/1.1450830

    Article  ADS  Google Scholar 

  20. Skini, R., Omri, A., Khlifi, M., Dhahri, E., Hlil, E.K.: Large magnetocaloric effect in lanthanum-deficiency manganites La 0.8-x□xCa0.2MnO3 (0.00≤x≤0.20) with a first-order magnetic phase transition. J. Magn. Magn. Mater. 364, 5–10 (2014). https://doi.org/10.1016/j.jmmm.2014.04.009

    Article  ADS  Google Scholar 

  21. El Maalam, K., Fkhar, L., Hamedoun, M., Mahmoud, A., Boschini, F., Hlil, E.K., Benyoussef, A., Mounkachi, O.: Magnetocaloric properties of zinc-nickel ferrites around room temperature. J. Supercond. Nov. Magn. 30, 2–6 (2017). https://doi.org/10.1007/s10948-016-3961-9.

    Article  Google Scholar 

  22. Search, H., Journals, C., Contact, A., Iopscience, M., Address, I.P.: Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3. 166005, 28, 166005 (n.d.). https://doi.org/10.1088/0953-8984/28/16/166005

  23. Oliveira, G.N.P., Machado, P., Pires, A.L., Pereira, A.M., Araújo, J.P., Lopes, A.M.L.: Magnetocaloric effect and refrigerant capacity in polycrystalline YCrO3. J. Phys. Chem. Solids. 91, 1–7 (2015). https://doi.org/10.1016/j.jpcs.2015.12.012.

    Article  Google Scholar 

  24. Mcdannald, A., Kuna, L., Jain, M.: Magnetic and magnetocaloric properties of bulk dysprosium chromite. J. Appl Phys. 114. https://doi.org/10.1063/1.4821016

  25. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  26. Kishi, H., Kohzu, N., Sugino, J., Ohsato, H. Iguchi, Y., Okuda, T.: The effect of rare-earth (La, Sm, Dy, Ho, and Er ) and Mg on the microstructure in BaTiO. J. Eur. Ceram. Soc. 19, 1043–1046 (1999). https://doi.org/10.1016/S0955-2219(98)00370-7

  27. Sheel, H.J., Marti, M.T.W., Fischer, P., Altorfer, F.: Crystal structures and phase transitions of orthorhombic and rhombohedral RGaO3 (R=La,Pr,Nd) investigated by neutron powder diffraction. J. Phys. Condens. Matter. 6, 127–135 (n.d.)

  28. Athawale, A.A., Desai, P.A.: Silver doped lanthanum chromites by microwave combustion method. 37, 3037–3043 (2011). https://doi.org/10.1016/j.ceramint.2011.05.008

  29. Khetre, S.R.B.M., Khilare, C.J., Shivankar, V.S.: Preparation and study of acetone gas sensing behavior of nanocrystalline LaCrO3 thick film, sensors & tranducers journal 137, 165–175 (2012)

  30. Sastre, E., Rida, K., Benabbas, A., Bouremmad, F., Pen, M.A.: Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol–gel derived lanthanum chromite perovskite. 327, 173–179 (2007). https://doi.org/10.1016/j.apcata.2007.05.015

  31. Kumar, P., Singh, R.K., Sinha, A.S.K., Singh, P.: Effect of isovalent ion substitution on electrical and dielectric properties. J. Alloys Compd. 576, 154–160 (2013). https://doi.org/10.1016/j.jallcom.2013.04.118

    Article  Google Scholar 

  32. Huang, L.W.S.S., Zerihun, G., Tian, Z., Yuan, S., Gong, G., Yin, C.: Magnetic exchange bias and high-temperature giant dielectric response in SmCrO3 ceramics. Ceram. Int. 40, 13937 (2014). https://doi.org/10.1016/j.ceramint.2014.05.115.

    Article  Google Scholar 

  33. Qian, X., Chen, L., Cao, S., Zhang, J.: A study of the spin reorientation with t-e orbital hybridization in SmCrO3. Solid State Commun. 195, 21–25 (2014). https://doi.org/10.1016/j.ssc.2014.06.019

    Article  ADS  Google Scholar 

  34. Banerjee, S.K.: On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  35. Poodar, P., Gupta, P.: Study of magnetic and thermal property of SmCrO3 polycrystallites. (n.d.). https://doi.org/10.1039/C6RA17203B

  36. Chen, W., Nie, L.Y., Zhong, W., Shi, Y.J., Hu, J.J., Li, A.J., Du, Y.W.: Magnetocaloric effect in Nd doped perovskite La0.7-xNd xBa0.3MnO3 polycrystalline near room temperature. J. Alloys Compd. 395, 23–25 (2005). https://doi.org/10.1016/j.jallcom.2004.11.025

    Article  Google Scholar 

  37. Biswal, H., Singh, V., Nath, R., Angappane, S., Sahu, J.R.: Magnetic and magnetocaloric properties of LaCr1-xMnxO3 (x = 0, 0.05, 0.1) Hrudananda. Ceram. Int. 3, (2019). https://doi.org/10.1016/j.ceramint.2019.07.311

  38. Panwar, N., Coondoo, I., Kumar, S., Kumar, S., Vasundhara, M., Rao, A.: Structural, electrical, optical and magnetic properties of SmCrO3 chromites: influence of Gd and Mn co-doping. J. Alloys Compd. 792, 1122 (2019). https://doi.org/10.1016/j.jallcom.2019.04.088

    Article  Google Scholar 

  39. Bora, T., Ravi, S.: Bipolar switching of magnetization and tunable exchange bias in NdCr1 − x Mn x O3 (x = 0.0–0.30). J. Appl. Phys. 3, 063901 (2014). https://doi.org/10.1063/1.4891682.

    Article  ADS  Google Scholar 

  40. Kumar, S., Coondoo, I., Vasundhara, M., Patra, A.K., Kholkin, A.L., Panwar, N.: Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites. J. Appl. Phys. 21, 043907 (2017). https://doi.org/10.1063/1.4974737.

    Article  ADS  Google Scholar 

  41. Wang, S., Wu, X., Yuan, L., Zhang, C., Cui, X., Lu, D.: Hydrothermal synthesis, morphology, structure and magnetic properties of perovskite structure LaCr1-xMnxO3 (x=0.1, 0.2 and 0.3). CrystEngComm. 20, 3034 (2018). https://doi.org/10.1039/C8CE00421H

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the MESRSFC (Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres) in the Framework of the national program PPR under contract no. PPR/2015/57. A. Mahmoud is grateful to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT no. 1510399.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Fkhar or O. Mounkachi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fkhar, L., Mahmoud, A., Boschini, F. et al. Structural, Magnetic, and Magnetocaloric Properties in Rare Earth Orthochromite (Sm, Nd, and La)CrO3 for Cooling Product. J Supercond Nov Magn 33, 1023–1030 (2020). https://doi.org/10.1007/s10948-019-05260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05260-z

Keywords

Navigation