Skip to main content
Log in

High-performance silver nanowire-based thermopolyurethane flexible conductive films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the unique flexibility or ductility, and efficient low-cost manufacturing process, flexible electronic devices have attracted a growing interest in scientific research and industry with applications in wearable electronic devices, stretchable antennas, flexible displays, and energy devices. Flexible conductive film (FCF), which functionalizes in building connections between different components of the devices, is key constitutions in flexible devices. We prepared the flexible conductive film with a diameter of approximately 60 nm and a length of 20 μm of silver nanowires (AgNWs) as the fillers and thermopolyurethane (TPU) as the matrix by solution blending and tape casting method. Further, self-made fluorinated decyl polyhedral oligomeric silsesquioxane (F-POSS) as hydrophobic layer was deposited on the AgNWs-TPU conductive film by immersing method. We systematically studied the properties of electronic conductivity, electrothermal response and infrared radiation (IR) thermal response performances, and superhydrophobic performance of AgNWs-TPU conductive films. The experimental results reveal that as the mass content of AgNWs reaches 30 wt%, the film displays good conductivity, and the resistivity of the film with 40 wt% AgNWs is 0.07 Ω·mm. AgNWs-TPU conductive film has good electrothermal response and IR thermal response performances. The water contact angle of the AgNWs-TPU conductive film with superhydrophobic layer reaches 155.29° ± 1.03 and superhydrophobic AgNWs-TPU conductive film slightly improves the reliability and tensile strength of the AgNWs-TPU conductive film. Our experimental results indicate that the superhydrophobic flexible conductive films prepared in this experiment can be applied to wearable flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Qi, J.X. He, H.B. Wang, Y.M. Zhou, X.L. You, N. Nan, W.L. Shao, L.D. Wang, B. Ding, S.Z. Cui, ACS Appl. Mater. Interfaces 9, 42951–42960 (2017)

    CAS  Google Scholar 

  2. C. Hu, Z. Li, Y. Wang, J. Mater. Chem. C 5, 2318–2328 (2017)

    CAS  Google Scholar 

  3. Y.G. Hu, T. Zhao, P.L. Zhu, Y. Zhang, X.W. Liang, R. Sun, C.P. Wong, Nano Res. 11, 1938–1955 (2018)

    Google Scholar 

  4. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25, 559–666 (2015)

    CAS  Google Scholar 

  5. Z.G. Lu, L.M. Ma, J.B. Tan, H.Y. Wang, X.M. Ding, Nanoscale 8, 16684–16693 (2016)

    CAS  Google Scholar 

  6. B.P. Singh, S. Nayak, K.K. Nanda, A. Singh, C. Takai, S. Takashi, M. Fuji, Polym. Compos. 39(1), 297–304 (2018)

    CAS  Google Scholar 

  7. J.-G. Lee, W. Cho, Y. Kim, H. Cho, H. Lee, J.H. Kim, RSC Adv. 9(8), 4428–4434 (2019)

    CAS  Google Scholar 

  8. Z. Wang, W. Liu, Y. Liu, Y. Ren, Y. Li, L. Zhou, J. Xu, J. Lei, Z. Li, Compos. B 180, 107569 (2020)

    CAS  Google Scholar 

  9. H. Hong, Y.H. Jung, J. S.Lee, C. Jeong, J. U. Kim, S. Lee, H. Ryu, H. Kim, Z. Ma, T. Kim, Adv. Funct. Mater. 29(37), (2019)

  10. W.D.S. Deniz, E.A. Sousa, E.P.S. Arlindo, W.K. Sakamoto, G.C. Fuzari Jr., Polym. Bull. 72(7), 1787–1797 (2015)

    CAS  Google Scholar 

  11. T. Wang, X. Zhang, Z. Wang, X. Zhu, J. Liu, X. Min, T. Cao, X. Fan, Polymers 11(10), 1564 (2019)

    CAS  Google Scholar 

  12. M. Li, K. Chang, W. Zhong, C. Xiang, W. Wang, Q. Liu, K. Liu, Y. Wang, Z. Lu, D. Wang, Appl. Surf. Sci. 486, 249–256 (2019)

    CAS  Google Scholar 

  13. Z. Jiang, M.O.G. Nayeem, K. Fukuda, S. Ding, H. Jin, T. Yokota, D. Inoue, D. Hashizume, T. Someya, Adv. Mater. 31(37), e1903446 (2019)

    Google Scholar 

  14. H.J. Duan, Y.D. Xu, D.X. Yan, Y.Q. Yang, G.Z. Zhao, Y.Q. Liu, Mater. Lett. 209, 353–356 (2017)

    CAS  Google Scholar 

  15. Y. Liu, Y. Chen, R. Shi, L. Cao, Z. Wang, T. Sun, J. Lin, J. Liu, W. Huang, RSC Adv. 7, 4891 (2017)

    CAS  Google Scholar 

  16. D. Li, T. Han, H. Ruan, ACS Omega. 3, 7191–7194 (2018)

    CAS  Google Scholar 

  17. J. An, T.-S.D. Le, Y. Huang, Z. Zhan, Y. Li, L. Zheng, W. Huang, G. Sun, Y.-J. Kim, ACS Appl. Mater. Interfaces 9, 44593–44601 (2017)

    CAS  Google Scholar 

  18. P. Wang, Z. Peng, M. Li, Small. 14, 1802625 (2018)

    Google Scholar 

  19. H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim, J.-H. Ahn, Adv. Mater. 28, 4184–4202 (2016)

    CAS  Google Scholar 

  20. H.L. Li, S.C. Dai, J. Miao, X. Wu, N. Chandrasekharan, H.X. Qiu, J.H. Yang, Carbon 126, 319–323 (2018)

    CAS  Google Scholar 

  21. E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Adv. Mater. 26, 4533–4538 (2014)

    CAS  Google Scholar 

  22. T.T. Tung, F. Alotaibi, M.J. Nine, R. Silva, D.N.H. Tran, I. Janowska, D. Losic, Chem. Eng. J. 338, 764–773 (2018)

    CAS  Google Scholar 

  23. P. Wang, Z. Peng, M. Li, Small 14(1–9), 1802625 (2018)

    Google Scholar 

  24. D. Kumar, V. Stoichkow, E. Brousseau, G.C. Smith, J. Kettle. Nanoscale 11, 5760–5769 (2019)

    CAS  Google Scholar 

  25. Y. Wei, S. Chen, Y. Lin, X.E. Yuan, L. Liu, J. Mater. Chem. C 4(5), 935–943 (2016)

    CAS  Google Scholar 

  26. M.F. Schumann, B. Fritz, R. Eckstein, U. Lemmer, G. Gomard, M. Wegener, Opt. Lett. 43, 527–530 (2018)

    CAS  Google Scholar 

  27. K.M. Chiang, Z.Y. Huang, W.L. Tsai, H.W. Lin, Org. Electron. 43, 15–20 (2017)

    CAS  Google Scholar 

  28. Y.H. Wang, A. Huang, H. Xie, J.Z. Liu, Y.Z. Zhao, J.Z. Li, J. Mater. Sci. 28(1), 10–17 (2017)

    CAS  Google Scholar 

  29. C. Chen, Y. Zhao, W. Wei, J. Tao, G. Lei, M. Wan, S. Li, S. Ji, C. Ye, J. Mater. Chem. C. 5, 2240–2246 (2017)

    CAS  Google Scholar 

  30. Q. Huang, K.N. Al-Milaji, H. Zhao, ACS Appl. Nanometer. 1(9), 4528–4536 (2018)

    CAS  Google Scholar 

  31. Y. Wang, X. Yang, D. Du, Y. Zhao, X. Zhang, Int. J. Mol. Sci. 20, 2803–2815 (2019)

    CAS  Google Scholar 

  32. Y. Wang, D. Du, X. Yang, X. Zhang, Y. Zhao, Nanomaterials 9(6), 904–916 (2019)

    CAS  Google Scholar 

  33. X. Yang, D. Du, Y. Wang, Y. Zhao, Micromachines 10(1), 22–32 (2019)

    Google Scholar 

  34. I.A. Rashid, M.S. Irfan, Y.Q. Gill, R. Nazar, F. Saeed, A. Afzal, H. Ehsan, A.A. Qaiser, A. Shakoor, Polym. Bull. 77(3), 1081–1093 (2020)

    CAS  Google Scholar 

  35. J. Huang, K. Dai, H. Liu, P.F. Zhan, J.C. Gao, G.Q. Zheng, C.T. Liu, C.Y. Shen, ACS Appl. Mater. Interfaces 9, 42266–42277 (2017)

    CAS  Google Scholar 

  36. S.-Y. Lin, T.-Y. Zhang, Q. Lu, D.-Y. Wang, Y. Yang, X.-M. Wu, T.-L. Ren, RSC Adv. 7, 27001–27006 (2017)

    CAS  Google Scholar 

  37. H.-Y. Mi, Z. Li, L.-S. Turng, Y. Sun, S. Gong, Mater. Des. 56, 398–404 (2014)

    CAS  Google Scholar 

  38. M.M. Ali, D. Maddipatla, B.B. Narakathu, A.A. Chlaihawi, S. Emamian, F. Janabi, B.J. Bazuin, M.Z. Atashbar, Sens. Actuators A 274, 109–115 (2018)

    Google Scholar 

  39. J.A. Orlicki, N.E. Zander, G.R. Martin, W.E. Kosik, D.J. Derek, J.L. Leadore, A.M. Rawlett, J. Appl. Polym. Sci. 128(6), 4181–4188 (2013)

    CAS  Google Scholar 

  40. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H.J. Cho, H. Algadi, S. Al-Sayari, D.E. Kim, T. Lee, Adv. Funct. Mater. 25, 3114–3121 (2015)

    CAS  Google Scholar 

  41. Y. Xu, Y. Yang, D. Yan, H. Duan, G. Zhao, Y. Liu, Chem. Eng. J. 360, 1427–1436 (2019)

    CAS  Google Scholar 

  42. Y. Lu, J. Jiang, S. Yoon, K.-S. Kim, J.-H. Kim, S. Park, S.-H. Kim, L. Piao, ACS Appl. Mater. Interfaces 10, 2093–2104 (2018)

    CAS  Google Scholar 

  43. Z.L. Li, H. Xie, D. Jun, Y.H. Wang, X.Y. Wang, J.Z. Li, J. Mater. Sci. 26(9), 6532–6538 (2015)

    CAS  Google Scholar 

  44. Y. Cai, X. Piao, X. Yao, E. Nie, Z. Zhang, Z. Sun, Mater. Lett. 249, 66–69 (2019)

    CAS  Google Scholar 

  45. D. Wee, Y.J. Song, J.R. Youn, Solar Energy Mater. Sol. Cells 147, 150–156 (2016)

    CAS  Google Scholar 

  46. T.Y. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, K.S. Suh, Adv. Funct. Mater. 23(10), 1250–1255 (2013)

    CAS  Google Scholar 

  47. M. Wu, B. Ma, T. Pan, S. Chen, J. Sun. Adv. Funct. Mater. 26, 569–576 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Science Foundation of China (Grant Numbers (61671140) and Zhongshan Science and Technology Projects (2018SYF10) and Guangdong “Climbing" Program (pdjh2020a0736).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zhou, Z., Zhang, J. et al. High-performance silver nanowire-based thermopolyurethane flexible conductive films. J Mater Sci: Mater Electron 31, 15038–15047 (2020). https://doi.org/10.1007/s10854-020-04067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04067-2

Navigation