Skip to main content
Log in

Flexible conductor fabrication via silver nanowire deposition on a polydopamine-modified pre-strained substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We fabricated a flexible conductor by depositing silver nanowires (AgNWs) on the surface of pre-strained polydopamine-modified polyurethane (PU) film. The polydopamine layer on the PU film created a highly hydrophilic surface that enhanced AgNWs adhesion to the PU film. When the pre-strained film was released, the PU film surfaces formed a uniformly buckled conductive layer. After embedding this substrate in polydimethylsiloxane (PDMS), a PU/AgNWs/PDMS flexible conductor was obtained. This flexible conductor can adapt to stretching (up to 20 % strain) and bending (3 mm bending radius) with slight changes in resistance, which was maintained at ~0.95 Ω after 1000 cycle tests. The resistance of the flexible conductor was 5.4 Ω under mechanical elongation of up to ~50 %, further demonstrating its obvious stretchable characteristics. Wavy AgNWs film-based stretchable conductors fabricated using a simple buckling approach could play an important role in the future development of flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Ge, H.B. Yao, X. Wang, Y.D. Ye, J.L. Wang, Z.Y. Wu, J.W. Liu, F.J. Fan, H.L. Gao, C.L. Zhang, S.H. Yu, Angew. Chem. Int. Ed. Engl. 52, 1654 (2013)

    Article  Google Scholar 

  2. L. Song, A.C. Myers, J.J. Adams, Y. Zhu, ACS Appl. Mater. Interfaces 6, 4248 (2014)

    Article  Google Scholar 

  3. K. Zhang, H. Hu, W. Yao, C. Ye, J. Mater. Chem. A 3, 617 (2014)

    Article  Google Scholar 

  4. X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 43, 3303 (2014)

    Article  Google Scholar 

  5. C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, Adv. Mater. 21, 4793 (2009)

    Article  Google Scholar 

  6. S. Yao, Y. Zhu, Nanoscale 6, 2345 (2014)

    Article  Google Scholar 

  7. S. Kim, J. Lee, J. Lee, D. Yang, B.C. Park, S. Ryua, I. Park, Nanoscale 6, 11932 (2014)

    Article  Google Scholar 

  8. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6, 296 (2011)

    Article  Google Scholar 

  9. D.J. Lipomi, B.C. Tee, M. Vosgueritchian, Z. Bao, Adv. Mater. 23, 1771 (2011)

    Article  Google Scholar 

  10. M.C. LeMieux, Z. Bao, Nature Nanotechnol. 3, 585 (2008)

    Article  Google Scholar 

  11. W. Hu, R. Wang, Y. Lu, Q. Pei, J. Mater. Chem. C 2, 1298 (2014)

    Article  Google Scholar 

  12. X. Wang, H. Hu, Y. Shen, X. Zhou, Z. Zheng, Adv. Mater. 23, 3090 (2011)

    Article  Google Scholar 

  13. K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, K. Jiang, Adv. Funct. Mater. 21, 2721 (2011)

    Article  Google Scholar 

  14. D.Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, Science 311, 208 (2006)

    Article  Google Scholar 

  15. Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng, W. Zhou, X. Chen, S. Xie, Adv. Mater. 25, 1058 (2013)

    Article  Google Scholar 

  16. A. Goyal, A.L. Reddy, P.M. Ajayan, Small 7, 1709 (2011)

    Article  Google Scholar 

  17. M.K. Shin, J. Oh, M. Lima, M.E. Kozlov, S.J. Kim, R.H. Baughman, Adv. Mater. 22, 2663 (2010)

    Article  Google Scholar 

  18. K.Y. Chun, Y. Oh, J. Rho, J.H. Ahn, Y.J. Kim, H.R. Choi, S. Baik, Nat. Nanotechnol. 5, 853 (2010)

    Article  Google Scholar 

  19. L. Lin, S. Liu, S. Fu, S. Zhang, H. Deng, Q. Fu, Small 9, 3620 (2013)

    Article  Google Scholar 

  20. Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J.G. Kim, S.J. Yoo, C. Uher, N.A. Kotov, Nature 500, 59 (2013)

    Article  Google Scholar 

  21. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam, D. Lee, S.S. Lee, S.H. Ko, Adv. Mater. 24, 3326 (2012)

    Article  Google Scholar 

  22. S. Ata, K. Kobashi, M. Yumura, K. Hata, Nano Lett. 12, 2710 (2012)

    Article  Google Scholar 

  23. S. Shang, W. Zeng, X.-M. Tao, J. Mater. Chem. 21, 7274 (2011)

    Article  Google Scholar 

  24. H. Hu, B. Yu, Q. Ye, Y. Gu, F. Zhou, Carbon 48, 2347 (2010)

    Article  Google Scholar 

  25. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318, 426 (2007)

    Article  Google Scholar 

  26. T. Akter, W.S. Kim, ACS Appl. Mater. Interfaces 4, 1855 (2012)

    Article  Google Scholar 

  27. W. Zhang, P. Chen, Q. Gao, Y. Zhang, Y. Tang, Chem. Mater. 20, 1699 (2008)

    Article  Google Scholar 

  28. Y. Zhu, F. Xu, Adv. Mater. 24, 1073 (2012)

    Article  Google Scholar 

  29. C. Wu, L. Fang, X. Huang, P. Jiang, ACS Appl. Mater. Interfaces 6, 21026 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial supports from National Natural Science Foundation of China (Grant No. 21407134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tailiang Zhang or Chunhua Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, T., Liu, Y. et al. Flexible conductor fabrication via silver nanowire deposition on a polydopamine-modified pre-strained substrate. J Mater Sci: Mater Electron 27, 3193–3201 (2016). https://doi.org/10.1007/s10854-015-4144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4144-3

Keywords

Navigation