Skip to main content
Log in

AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The flourishing development and fast-growing consumption of flexible electronics has brought great pressure to the fragile environment owing to the large amount of plastic waste generated by their non-degradable petroleum-derived polymeric substrates. To alleviate environmental burdens, there’s an urgent need to develop bio-based and biodegradable polymers to replace the petroleum-derived ones used in flexible electronics. In this work, a fully biodegradable polymer, stereocomplex-type polylactide (SC-PLA), together with silver nanowire (AgNW) was exploited to fabricate conductive composite film and the application of this film in flexible electronics was explored. By thermal annealing in the protection of a zinc oxide (ZnO) layer, the AgNW/SC-PLA film with 100% stereocomplex crystallites was obtained. The ZnO/AgNW/SC-PLA film exhibited the sheet resistance of 39.3 Ω/sq with good stability under bending and tape tests. As contrasted with PLA, the film based on SC-PLA presented better mechanical properties and hydrolysis resistance. Specially, a pressure sensor based on the ZnO/AgNW/SC-PLA film was successfully fabricated and it showed considerable flexibility, high sensitivity, and good stability. This work provided an effective way to fabricate biodegradable AgNW/SC-PLA film with high performances and great application potentials, which could help broaden the applications of SC-PLA and develop degradable flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.M. You, W.Q. Liao, D. Zhao, H.Y. Ye, Y. Zhang, Q. Zhou, X. Niu, J. Wang, P.F. Li, D.W. Fu, Z.M. Wang, S. Gao, K.L. Yang, J.M. Liu, J.Y. Li, Y.F. Yan, R.G. Xiong, An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017)

    Article  CAS  Google Scholar 

  2. A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, T. Someya, Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017)

    Article  CAS  Google Scholar 

  3. L. Li, M. Hao, X. Yang, F. Sun, Y. Bai, H. Ding, S. Wang, T. Zhang, Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy 72, 104663 (2020)

    Article  CAS  Google Scholar 

  4. K.D. Harris, A.L. Elias, H.J. Chung, Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 51, 2771–2805 (2016)

    Article  CAS  Google Scholar 

  5. M. Jian, Y. Zhang, Z. Liu, Natural biopolymers for flexible sensing and energy devices. Chin. J. Polym. Sci. 38, 459–490 (2020)

    Article  CAS  Google Scholar 

  6. H.C. Weerasinghe, F. Huang, Y.-B. Cheng, Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2, 174–189 (2013)

    Article  CAS  Google Scholar 

  7. Y. Cao, K.E. Uhrich, Biodegradable and biocompatible polymers for electronic applications: a review. J. Bioact. Compat. Pol. 34, 3–15 (2018)

    Article  CAS  Google Scholar 

  8. E. Ghoniem, S. Mori, A. Abdel-Moniem, Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate. J. Power Sources 324, 272–281 (2016)

    Article  CAS  Google Scholar 

  9. Y.S. Lin, W.H. Lu, T.H. Tsai, M.H. Hsieh, Direct one-step synthesis of flexible electrochromic tungsten/iron mixed oxide films onto flexible PET/ITO substrates using low temperature plasma polymerization. J. Mater. Sci. 26, 9044–9055 (2015)

    CAS  Google Scholar 

  10. D. Chen, J.J. Liang, C. Liu, G. Saldanha, F.C. Zhao, K. Tong, J. Liu, Q.B. Pei, Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv. Funct. Mater. 25, 7512–7520 (2015)

    Article  Google Scholar 

  11. K. Kato, Y. Hatasako, M. Kashiwagi, H. Hagino, C. Adachi, K. Miyazaki, Fabrication of a flexible bismuth telluride power generation module using microporous polyimide films as substrates. J. Electron. Mater. 43, 1733–1739 (2014)

    Article  CAS  Google Scholar 

  12. M.S. Gulsu, F. Bagci, S. Can, A.E. Yilmaz, B. Akaoglu, Metamaterial-based sensor with a polycarbonate substrate for sensing the permittivity of alcoholic liquids in a WR-229 waveguide. Sens. Actuators A 312, 112139 (2020)

    Article  CAS  Google Scholar 

  13. H.H. Hsu, C.Y. Chang, C.H. Cheng, High performance IGZO/TiO2 thin film transistors using Y2O3 buffer layers on polycarbonate substrate. Appl. Phys. A 112, 817–820 (2013)

    Article  CAS  Google Scholar 

  14. A.C.C. Arantes, L.E. Silva, D.F. Wood, CdG. Almeida, G.H.D. Tonoli, T.G. Oliveira, JEd, Silva, JPd, Williams, W.J. Orts, M.L. Bianchi, Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydr. Polym. 207, 100–107 (2019)

    Article  CAS  Google Scholar 

  15. S.M. Abdelbasir, C.T. El-Sheltawy, D.M. Abdo, Green processes for electronic waste recycling: a review. J. Sustain. Metall. 4, 295–311 (2018)

    Article  Google Scholar 

  16. K.K. Fu, Z. Wang, J. Dai, M. Carter, L. Hu, Transient electronics: materials and devices. Chem. Mater. 28, 3527–3539 (2016)

    Article  CAS  Google Scholar 

  17. D. Merino, V.A. Alvarez, Green microcomposites from renewable resources: effect of seaweed (Undaria pinnatifida) as filler on corn starch–chitosan film properties. J. Polym. Environ. 28, 500–516 (2020)

    Article  CAS  Google Scholar 

  18. M. Irimia-Vladu, “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43, 588–610 (2014)

    Article  CAS  Google Scholar 

  19. R.M. Silva, B.S. Noremberg, N.H. Marins, J.H. Alano, L.R. Santana, A. Valentini, D. Łukowiec, T. Tański, N.L.V. Carreño, Flexible cellulose-carbon nanotube paper substrate decorated with PZT: sensor properties. MRS Adv. 3, 31–36 (2018)

    Article  CAS  Google Scholar 

  20. Y. Kim, Y. Song, H. Kim, Preparation of eco-friendly transparent electrode for flexible device using cellulose substrate. Fiber Polym. 20, 466–471 (2019)

    Article  CAS  Google Scholar 

  21. S.A. Ogundare, W.E. van Zyl, A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 26, 6489–6528 (2019)

    Article  CAS  Google Scholar 

  22. D.H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y. Huang, K.C. Hwang, M.R. Zakin, B. Litt, J.A. Rogers, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)

    Article  CAS  Google Scholar 

  23. B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, X. Chen, Silk fibroin for flexible electronic devices. Adv. Mater. 28, 4250–4265 (2016)

    Article  CAS  Google Scholar 

  24. Y. Chen, L. Duan, Y. Ma, Q. Han, X. Li, J. Li, A. Wang, S. Bai, J. Yin, Preparation of transient electronic devices with silk fibroin film as a flexible substrate. Colloid Surf. A 600, 124896 (2020)

    Article  CAS  Google Scholar 

  25. H. Tsuji, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569–597 (2005)

    Article  CAS  Google Scholar 

  26. H. Tsuji, Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Deliv. Rev. 107, 97–135 (2016)

    Article  CAS  Google Scholar 

  27. A. Michalski, M. Brzezinski, G. Lapienis, T. Biela, Star-shaped and branched polylactides: synthesis, characterization, and properties. Prog. Polym. Sci. 89, 159–212 (2019)

    Article  CAS  Google Scholar 

  28. S. Li, C. Wang, X. Zhuang, Y. Hu, F. Chu, Renewable resource-based composites of acorn powder and polylactide bio-plastic: preparation and properties evaluation. J. Polym. Environ. 19, 301–311 (2011)

    Article  CAS  Google Scholar 

  29. M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Biobased plastics and bionanocomposites: current status and future opportunities. Prog. Polym. Sci. 38, 1653–1689 (2013)

    Article  CAS  Google Scholar 

  30. D. Bai, H. Liu, H. Bai, Q. Zhang, Q. Fu, Low-temperature sintering of stereocomplex-type polylactide nascent powder: effect of crystallinity. Macromolecules 50, 7611–7619 (2017)

    Article  CAS  Google Scholar 

  31. S. Deng, H. Bai, Z. Liu, Q. Zhang, Q. Fu, toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending. Macromolecules 52, 1718–1730 (2019)

    Article  CAS  Google Scholar 

  32. H. Liu, W. Zhou, P. Chen, D. Bai, Y. Cai, J. Chen, A novel aryl hydrazide nucleator to effectively promote stereocomplex crystallization in high-molecular-weight poly(L-lactide)/poly(D-lactide) blends. Polymer 122873 (2020)

  33. Y. Zheng, P. Pan, Crystallization of biodegradable and biobased polyesters: polymorphism, cocrystallization, and structure-property relationship. Prog. Polym. Sci. 109, 101291 (2020)

    Article  CAS  Google Scholar 

  34. D. Bai, H. Liu, Y. Ju, S. Deng, H. Bai, Q. Zhang, Q. Fu, Low-temperature sintering of stereocomplex-type polylactide nascent powder: the role of poly(methyl methacrylate) in tailoring the interfacial crystallization between powder particles. Polymer 210, 123031 (2020)

    Article  CAS  Google Scholar 

  35. P. Purnama, S.H. Kim, Biodegradable blends of stereocomplex polylactide and lignin by supercritical carbon dioxide-solvent system. Macromol. Res. 22, 74–78 (2014)

    Article  CAS  Google Scholar 

  36. Y. Ikada, K. Jamshidi, H. Tsuji, S.H. Hyon, Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20, 904–906 (1987)

    Article  CAS  Google Scholar 

  37. D. Bai, X. Diao, Y. Ju, H. Liu, H. Bai, Q. Zhang, Q. Fu, Low-temperature sintering of stereocomplex-type polylactide nascent powder: the role of optical purity in directing the chain interdiffusion and cocrystallization across the particle interfaces. Polymer 150, 169–176 (2018)

    Article  CAS  Google Scholar 

  38. H. Tsuji, S. Yamamoto, Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296, 583–589 (2011)

    Article  CAS  Google Scholar 

  39. H. Bai, S. Deng, D. Bai, Q. Zhang, Q. Fu, Recent advances in processing of stereocomplex-type polylactide. Macromol Rapid Commun 38 (2017)

  40. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31, 17332–17338 (2020)

    Google Scholar 

  41. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021)

    Article  CAS  Google Scholar 

  42. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. B Eng. 174, 106930 (2019)

    Article  CAS  Google Scholar 

  43. M. Ghodrati, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram. Int. 46, 28894–28902 (2020)

    Article  CAS  Google Scholar 

  44. F. Razi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J. Mol. Liq. 225, 645–651 (2017)

    Article  CAS  Google Scholar 

  45. H. Liu, B. Haider, H.R. Fried, J. Ju, O. Bolonduro, V. Raghuram, B.P. Timko, Nanobiotechnology: 1D nanomaterial building blocks for cellular interfaces and hybrid tissues. Nano Res. 11, 5372–5399 (2018)

    Article  Google Scholar 

  46. Z. Cui, F.R. Poblete, G. Cheng, S. Yao, X. Jiang, Y. Zhu, Design and operation of silver nanowire based flexible and stretchable touch sensors. J. Mater. Res. 30, 79–85 (2015)

    Article  CAS  Google Scholar 

  47. Y. Zhang, P. He, M. Luo, X. Xu, G. Dai, J. Yang, Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 13, 919–926 (2020)

    Article  CAS  Google Scholar 

  48. Z.B. Yu, Q.W. Zhang, L. Li, Q. Chen, X.F. Niu, J. Liu, Q.B. Pei, Highly flexible silver nanowire electrodes for shape memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011)

    Article  CAS  Google Scholar 

  49. X.Y. Zeng, Q.K. Zhang, R.M. Yu, C.Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 22, 4484–4488 (2010)

    Article  CAS  Google Scholar 

  50. M. Song, D.S. You, K. Lim, S. Park, S. Jung, C.S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J.H. Park, J.-W. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 23, 4177–4184 (2013)

    Article  CAS  Google Scholar 

  51. X. Sun, W. Zha, T. Lin, J. Wei, I. Ismail, Z. Wang, J. Lin, Q. Luo, C. Ding, L. Zhang, Z. Su, B. Chu, D. Zhang, C.-Q. Ma, Water-assisted formation of highly conductive silver nanowire electrode for all solution-processed semi-transparent perovskite and organic solar cells. J. Mater. Sci. 55, 14893–14906 (2020)

    Article  CAS  Google Scholar 

  52. J. Hu, J. Yu, Y. Li, X. Liao, X. Yan, L. Li, Nano carbon black-based high performance wearable pressure sensors. Nanomaterials 10 (2020)

  53. J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2007)

    Article  CAS  Google Scholar 

  54. J.M. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Investigation of phase transitional behavior of poly(l-lactide)/poly(d-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40, 1049–1054 (2007)

    Article  CAS  Google Scholar 

  55. J. Cheng, R. Hu, Q. Wang, C.X. Zhang, Z. Xie, Z.W. Long, X. Yang, L. Li, Substrate temperature effect on charge transport performance of ZnO electron transport layer prepared by a facile ultrasonic spray pyrolysis in polymer solar cells. Int J Photoenergy 201472 (2015)

  56. M.J. Kim, D.W. Shin, J.-Y. Kim, S.H. Park, I.T. Han, J.B. Yoo, The production of a flexible electroluminescent device on polyethylene terephthalate films using transparent conducting carbon nanotube electrode. Carbon 47, 3461–3465 (2009)

    Article  CAS  Google Scholar 

  57. D. Azulai, U. Givan, N. Shpaisman, T.L. Belenkova, H. Gilon, F. Patolsky, G. Markovich, On-surface formation of metal nanowire transparent top electrodes on CdSe nanowire array-based photoconductive devices. ACS Appl. Mater. Interfaces 4, 3157–3162 (2012)

    Article  CAS  Google Scholar 

  58. R. Ivanauskas, D. Milasiene, Fabrication of Polyamide-Ag2Se composite films with controllable properties by an adsorption-diffusion method. J Phys Chem Solids 145 (2020)

  59. R. Alaburdaite, E. Paluckiene, Investigation of CuxS layers on polypropylene film formed by using different sulfuring agents. Chalcogenide Lett. 15, 139–149 (2018)

    CAS  Google Scholar 

  60. J.-K. Kim, K.H. Kang, J.-M. Lee, Electrical properties of transferred graphene films on pre-treated polyimide substrate by inductively coupled plasma. Carbon 109, 282–289 (2016)

    Article  CAS  Google Scholar 

  61. S.R. Andersson, M. Hakkarainen, S. Inkinen, A. Södergård, A.-C. Albertsson, Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromol 11, 1067–1073 (2010)

    Article  CAS  Google Scholar 

  62. D. Grewell, G. Srinivasan, E. Cochran, Depolymerization of post-consumer polylactic acid products. J. Renew. Mater. 2, 157–165 (2014)

    Article  CAS  Google Scholar 

  63. R. Petrus, D. Bykowski, P. Sobota, Solvothermal alcoholysis routes for recycling polylactide waste as lactic acid esters. ACS Catal. 6, 5222–5235 (2016)

    Article  CAS  Google Scholar 

  64. Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A Wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19, 1143–1150 (2019)

    Article  CAS  Google Scholar 

  65. J. He, P. Xiao, W. Lu, J. Shi, L. Zhang, Y. Liang, C. Pan, S.-W. Kuo, T. Chen, A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019)

    Article  CAS  Google Scholar 

  66. S. Zang, Q. Wang, Q. Mi, J. Zhang, X. Ren, A facile, precise radial artery pulse sensor based on stretchable graphene-coated fiber. Sens. Actuators A 267, 532–537 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Program (Grant No. 2018YFB0407102), National Natural Science Foundation of China (Grant Nos. 51903025, 51903027), Chongqing Science and Technology Innovation Leading Talent Support Program (Grant No. T04040012), Natural Science Foundation of Chongqing (Grant No. cstc2019jcyjjqx0021), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901320), Public Service Platform for the Industrialization of Technological Innovation Achievements in the field of Robot and Intelligent Manufacturing in Chongqing (Grant No. 2019-00900-1-1), and the Talent Introduction Project of Chongqing University of Arts and Sciences (Grant No. R2018SCL26), and Sichuan Science and Technology Program (Grant Nos. 2020YFG0281, 2020YFG0279, 2019YFG0121). This work was also sponsored by Sichuan Province Key Laboratory of Display Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Jun Zhou, Conceptualization, Methodology, Writing - Original Draft; Junsheng Yu, Software, Project administration; Dongyu Bai: Supervision, Funding acquisition, Writing - Review & Editing; Jun Lu, Validation, Data Curation, Formal analysis; Huili Liu, Investigation, Data Curation, Methodology; Ying Li, Investigation, Software, Visualization; Lu Li, Supervision, Funding acquisition, Writing - Review & Editing.

Corresponding authors

Correspondence to Dongyu Bai or Lu Li.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yu, J., Bai, D. et al. AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron 32, 6080–6093 (2021). https://doi.org/10.1007/s10854-021-05327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05327-5

Navigation