Skip to main content

Advertisement

Log in

Effect of manganese doping on the structural, morphological, optical, electrical, and magnetic properties of BaSnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ABO3 perovskites show unusual property modifications by proper substitution at the A and B sites. Polycrystalline perovskite BaSnO3 samples doped with different concentrations of manganese (BaSn1−xMnxO3) were synthesized by solid-state reaction method. Rietveld refinement of XRD analysis confirmed the structure and phase purity of the synthesized compound. Diamagnetic-to-paramagnetic transition and optical bandgap tuning indicate the substitutional effect of Mn in the host BaSnO3 lattice. The strong reverse saturable absorption of the synthesized samples makes them ideal candidate for optical limiting applications. The frequency and composition-dependent dielectric studies reveal that Mn-doped BaSn1−xMnxO3 can be used for high-frequency device applications. The cycling retention in the specific capacitance of 96.2% at a current density of 25 mA/g even after 2500 cycles in Mn-doped BaSnO3 electrode can be used in energy storage devices for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, J. Appl. Phys. 112, 043703 (2012)

    Google Scholar 

  2. B. Hadjarab, A. Bouguelia, M. Trari, J. Phys. Chem. Solids 68, 1491 (2007)

    CAS  Google Scholar 

  3. P. Singh, D. Kumar, O. Parkash, J. Appl. Phys. 97, 074103 (2005)

    Google Scholar 

  4. L. Yang, H. Qiu, L. Pan, Z. Guo, M. Xu, J. Yin, X. Zhao, J. Magn. Magn. Mater 350, 1–5 (2014)

    CAS  Google Scholar 

  5. H. Nakayama, H.K. Yoshida, Jpn J. Appl. Phys. 40, 355 (2001)

    Google Scholar 

  6. X. Lang, H. Mo, X. Hu, H. Tian, Dalton Trans 46, 13720 (2017)

    CAS  Google Scholar 

  7. J. Cerda, J. Arbiol, R. Diaz, G. Dezanneau, J.R. Morante, Mater. Lett. 56, 131 (2002)

    CAS  Google Scholar 

  8. H. Mizoguchi, P.M. Woodward, C.H. Park, D.A. Keszler, J. Am. Chem. Soc. 126, 9796 (2004)

    CAS  Google Scholar 

  9. U. Lampe, J. Gerblinger, H. Meixner, Sens. Actuators B 24–25, 657 (1995)

    Google Scholar 

  10. R. Vivekanandan, T.R.N. Kutty, Ceram. Int. 14, 207 (1988)

    Google Scholar 

  11. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, J. Alloys Compd. 394, 292 (2005)

    CAS  Google Scholar 

  12. W. Lu, S. Jiang, D. Zhou, S. Gong, Sens. Actuators 80, 35–37 (2000)

    CAS  Google Scholar 

  13. G. Veerappan, S. Yoo, K. Zhang, M. Ma, B. Kang, J.H. Park, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2016.07.076

    Article  Google Scholar 

  14. C. Wei, R. Zhang, X. Zheng, Q. Ru, Q. Chen, C. Cui, G. Li, D. Zhang, Inorg. Chem. Front 5, 3126 (2018)

    CAS  Google Scholar 

  15. C. Wei, N. Zhan, J. Tao, S. Pang, L. Zhang, C. Cheng, D. Zhang, Appl. Surf. Sci. 453, 288–296 (2018)

    CAS  Google Scholar 

  16. C. Wei, Q. Ru, X. Kang, H. Hou, C. Cheng, D. Zhang, Appl. Surf. Sci. (2010)

  17. T.-F. Yi, L.-Y. Qiu, J. Mei, S.-Y. Qi, P. Cui, S. Luo, Y.-R. Zhu, Y. Xie, Y.-B. He, Sci. Bull. 56, 546–556 (2020)

    Google Scholar 

  18. S. Sumithra, N.V. Jaya, J. Supercond. Nov. Magn. 31, 2777–2787 (2017)

    Google Scholar 

  19. K. Balamurugan, N.H. Kumar, J.A. Chelvane, P.N. Santhosh, Phys. B 407, 2519–2523 (2012)

    CAS  Google Scholar 

  20. T.R.N. Kutty, R. Vivekanadan, Mater. Res. Bull. 11, 1457–1465 (1987)

    Google Scholar 

  21. C.V.G. Reddy, S.V. Manorama, V.J. Rao, A. Lobo, S.K. Kulkarni, Thin Solid Films 348, 261–265 (1999)

    CAS  Google Scholar 

  22. S. Tao, F. Gao, X. Liu, O.T. Sørensen, Sens. Actuators B 71, 223–227 (2000)

    CAS  Google Scholar 

  23. S. Upadhyay, O. Parkash, D. Kumar, J. Mater. Sci. Lett. 16, 1330–1332 (1997)

    CAS  Google Scholar 

  24. M. Bao, W. Li, P. Zhu, J. Mater. Sci. 28, 6617–6621 (1993)

    CAS  Google Scholar 

  25. A.M. Azad, N.C. Hon, J. Alloys Compd. 270, 95–106 (1998)

    CAS  Google Scholar 

  26. M. Licheron, G. Jouarf, E. Hussona, J. Eur. Ceram. 17, 1453–1457 (1997)

    CAS  Google Scholar 

  27. S. Tao, F. Gao, X. Liu, O.T. Sùrensen, Sens. Actuators B 71, 223–227 (2000)

    CAS  Google Scholar 

  28. C.P. Udawatte, M. Kakihana, M. Yoshimura, Solid State Ion. 108, 23–30 (1998)

    CAS  Google Scholar 

  29. G. Wagner, H.Z. Binder, Anorg. Allegem. Chem. 297, 328–346 (1958)

    CAS  Google Scholar 

  30. J. John, S.R. Chalana, R. Prabhu, V.P.M. Pillai, Appl. Phys. A 125, 155 (2019). https://doi.org/10.1007/s00339-019-2432-0

    Article  CAS  Google Scholar 

  31. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction in Diffraction III: Real Samples, 3rd edn. 170 (Addison-Wesley, Boston, Chap. 5, 1978)

  32. B.H. Toby, R.B. Von Dreele, J. Appl. Crystallogr. 46(2), 544–549 (2013)

    CAS  Google Scholar 

  33. G.K. Williamson, W.H. Hall, Acta. Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  34. W.G. Fateley, F.R. Dollish, N.T. McDevitt, F.F. Benthy, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, 3rd edn. (Wiley, New York, 1972)

    Google Scholar 

  35. T.N. Stanislavchuk, A.A. Sirenko, P. Litvinchuk, X. Luo, S.W. Cheong, J. Appl. Phys. 112, 044108 (2012)

    Google Scholar 

  36. A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys Compd. 509, 1830–1835 (2011)

    CAS  Google Scholar 

  37. S. Ouni, S. Nouri, J. Rohlicek, R. Ben Hassen, J. Solid State Chem. 192, 132–138 (2012)

    CAS  Google Scholar 

  38. M.C.F. Alves, M.R. Nascimento, S.J.G. Lima, P.S. Pizani, J.W.M. Espinosa, E. Longo, L.E.B. Soledade, A.G. Souza, I.M.G. Santos, Mater. Lett. 63, 118–120 (2009)

    CAS  Google Scholar 

  39. A. Kumar, J. Kumar, Solid State Commun. 147(9), 405–408 (2008)

    CAS  Google Scholar 

  40. Z. Li, W. Zhang, C. Yuan, Y. Su, RSC Adv. 7, 12931 (2017)

    CAS  Google Scholar 

  41. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)

    Google Scholar 

  42. G. Larramona, C. Gutierrez, I. Pereira, M.R. Nunes, F.M.A. da Costa, J. Chem. Soc. Faraday Trans. 85(4), 907–916 (1989)

    CAS  Google Scholar 

  43. M.C. Alves, S.C. Souza, H.H. Lima, M.R. Nascimento, M.R. Silva, J.W. Espinosa, S.J. Lima, E. Longod, P.S. Pizani, L.E. Soledadea, A.G. Souzaa, I.M. Santosa, J. Alloys Compd. 476, 507–512 (2009)

    CAS  Google Scholar 

  44. D. Melo, R.M. Marinho, F.T. Vieira, S.J. Lima, E. Longo, A.G. Souza, A.S. Maia, I.M. Santos, J. Therm. Anal. Calorim. 106, 513–517 (2010)

    Google Scholar 

  45. J. John, S. Suresh, S.R. Chalana, V.P.M. Pillai, Appl. Phys. A 125, 743 (2019)

    Google Scholar 

  46. M. Kwoka, M. Krzywiecki, Beilstein J. Nanotechnol. 8, 514–521 (2017)

    CAS  Google Scholar 

  47. W.Y. Chen, J.S. Jeng, J.S. Chena, ECS Solid State Lett. 1(5), N17–N19 (2012)

    CAS  Google Scholar 

  48. Q. Wu, Y.C. Li, S.Q. Li, Z.Z. Li, G.D. Tang, W.H. Qi, L.C. Xue, X.S. Ge, L.L. Ding, AIP Adv. 5, 097210 (2015). https://doi.org/10.1063/1.4931996

    Article  CAS  Google Scholar 

  49. O.A. Bulavchenko, Z.S. Vinokurov, T.N. Afonasenko, P.G. Tsyrul’nikov, S.V. Tsybulya, A.A. Saraev, V.V. Kaichev, Dalton Trans. 44, 15499 (2015)

    CAS  Google Scholar 

  50. H.W. Nesbitt, D. Banerjee, Am. Mineral. 83(3–4), 305–315 (1998)

    CAS  Google Scholar 

  51. M.Q. Awan, J. Ahmad, A. Berlie, Y. Liu, Dig. J. Nanomater. Biostruct. 13, 6–75 (2018)

    Google Scholar 

  52. S. Ghosh, D. De Munshi, K. Mandal, J. Appl. Phys. 107, 123919 (2010). https://doi.org/10.1063/1.3437641

    Article  CAS  Google Scholar 

  53. A. Sarkar, S.K. De, Semicond. Sci. Technol. (2018). https://doi.org/10.1088/1361-6641/aaabf3

    Article  Google Scholar 

  54. J.E. Wertz, J.R. Bolton, Electron Spin Resonance, 1st edn. (Chapman and Hall, New York, 1986)

    Google Scholar 

  55. H. Mansoor, W.L. Harrigan, K.A. Lehuta, K.R. Kittilstved, Front. Chem. 7, 353 (2019)

    CAS  Google Scholar 

  56. K.A. Muller, Phys. Rev. Lett. 2, 341 (1959)

    CAS  Google Scholar 

  57. B. Raneesh, K. Nandakumar, A. Saha, D. Das, H. Soumya, J. Philip, P. Sreekanth, R. Philip, RSC Adv. 5, 12480–12487 (2015)

    CAS  Google Scholar 

  58. M. Arshada, A.S. Ahmeda, A. Azama, A.H. Naqvia, J. Alloys Compd 577, 469–474 (2013)

    Google Scholar 

  59. T. Iqbal, S. Ghazal, S. Atiq, N.R. Khalid, A. Majid, S. Afsheen, N.A. Niaz, Dig. J. Nanomater. Biostruct. 11(3), 899–908 (2016)

    Google Scholar 

  60. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2013.07.054

    Article  Google Scholar 

  61. A.A.E. Ata, M.E. Nimr, S. Attia, D. El Kony, A.A. Hammadi, J. Magn. Magn. Mater. 297(1), 33–43 (2006)

    Google Scholar 

  62. M. Dhananjaya, N. Guru Prakash, A. Lakshmi Narayana, O.M. Hussain, Appl. Phys. A 124, 185 (2018). https://doi.org/10.1007/s00339-017-1522-0

    Article  CAS  Google Scholar 

  63. N. Guru Prakash, M. Dhananjaya, A. Lakshmi Narayana, D.P.M.D. Shaik, P. Rosaiah, M. Hussain, Ceram. Int. 44, 9967–9975 (2014)

    Google Scholar 

  64. R.J. Deokate, R.S. Kalubrame, C.J. Park, C.D. Lokhande, Electrochim. Acta 2, 89 (2016). https://doi.org/10.1016/j.electacta.2016.12.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Aji Alexander for useful discussions on the open aperture Z-scan measurements. Authors also thank SICC, University of kerala for providing the characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Mahadevan Pillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, J., Dhananjaya, M., Suresh, S. et al. Effect of manganese doping on the structural, morphological, optical, electrical, and magnetic properties of BaSnO3. J Mater Sci: Mater Electron 31, 11159–11176 (2020). https://doi.org/10.1007/s10854-020-03665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03665-4

Navigation