Skip to main content
Log in

Effect of oxygen pressure on the structural and optical properties of BaSnO3 films prepared by pulsed laser deposition method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BaSnO3 thin films were deposited on quartz substrate by pulsed laser deposition technique under different background oxygen pressures and the effects of oxygen pressure on the structural, morphological and optical properties of BaSnO3 thin films are systematically investigated using different characterization techniques. The BaSnO3 films deposited without and with oxygen pressures are polycrystalline in nature with cubic crystalline phase. Moderate oxygen ambience favors enhanced crystallinity of the BaSnO3 films and 0.02 mbar is found to be optimum oxygen pressure for highest crystallinity. The surface morphology of the deposited films was strongly affected by the oxygen pressure in the deposition chamber. A systematic increase of film thickness and decrease of RMS surface roughness is observed with increase in oxygen pressure. XPS analysis reveals that barium is in the + 2 oxidation state and Sn is in the + 4 oxidation state in the film deposited at optimum oxygen pressure of 0.02 mbar. The deposited BaSnO3 films have photoluminescence emissions in the visible region and have high transmittance in the visible and infrared regions. The BaSnO3 films deposited at oxygen ambience shows a blue shift in the optical band gap. The optimized film shows high crystallinity, high value of transmittance and wide band gap energy which indicates its suitability for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. .Albuquerque, J. Appl. Phys. 112, 043703 (2012). https://doi.org/10.1063/1.4745873

    Article  ADS  Google Scholar 

  2. S. Upadhyay, O. Parkash, D. Kumar, J. Phys. D. Appl. Phys (2004). https://doi.org/10.1088/0022-3727/37/10/011

    Article  Google Scholar 

  3. J. Cerda, J. Arbiol, R. Diaz, G. Dezanneau, J.R. Morante, Mater. Lett. 56, 131–136 (2002)

    Google Scholar 

  4. B. Ostrick, M. Fleischer, U. Lampe, H. Meixner, Sens. Actuators. B 44, 601–606 (1997)

    Google Scholar 

  5. C. Doroftei, P.D. Popa, F. Iacomi, J. Optoelectr, Adv. Mater. 14(3–4), 413–417 (2012)

    Google Scholar 

  6. Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, G. Ding, J. Phys. D. Appl. Phys. 43, 455401 (2010). https://doi.org/10.1088/0022-3727/43/45/455401

    Article  ADS  Google Scholar 

  7. R.M. Katiliute, P. Seibutas, M. Ivanov, R. Grigalaitis, A. Stanulis, J. Banys, A. Kareiva, Ferroelectrics. 464, 49–58 (2014)

    Google Scholar 

  8. W.J. Lee, H.J. Kim, J. Kang, D.H. Jang, T.H. Kim, J.H. Lee, K.H. Kim, Annu. Rev. Mater. Res. 47, 391–423 (2017)

    Google Scholar 

  9. B. Liu, Q. Liu, Y. Zhang, Z. Liu, L. Geng, J. Alloys. Compd. 680, 343–349 (2016). https://doi.org/10.1016/j.jallcom.2016.04.157

    Article  Google Scholar 

  10. S.A. Salehizadeh, H.M. Chenari, M. Shabani, H.A. Ahangar, R. Zamiri, A. Rebelo, J.S. Kumar, M.P.F. .Graca, J.M.F. Ferreira, RSC. Adv. 8, 2100 (2018). https://doi.org/10.1039/c7ra12442b

    Article  Google Scholar 

  11. M.J. Ansaree, S. Upadhyay, Ionics. 21, 2825–2838 (2015). https://doi.org/10.1007/s11581-015-1476-1

    Article  Google Scholar 

  12. J. U.Lampe, H. Gerblinger, Meixner, Sens. Actuators. B 24–25, 657–660 (1995)

    Google Scholar 

  13. W. Lu, H. Schmidt, J. Mater. Sci. 42, 10007–10013 (2007). https://doi.org/10.1007/s10853-007-2069-9

    Article  ADS  Google Scholar 

  14. S. Upadhyay, O. Parkash, J. Mater. Sci. Lett. 16, 1330–1332 (1997)

    Google Scholar 

  15. H.J. Kim et al., Appl. Phys. Express 5, 061102 (2012)

    ADS  Google Scholar 

  16. S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, APL. Mater. 4, 016106 (2016)

    ADS  Google Scholar 

  17. C.W. Zhao, B.C. Luo, C.L. Chen, RSC. Adv. 7, 19492 (2017)

    Google Scholar 

  18. M. Wu, S. Yu, L. He, L.Yang,W. Zhang, Sci. Rep. 7: 103. https://doi.org/10.1038/s41598-017-00178-9

  19. H. Yun, M. Topsakal, A. Prakash, K. Ganguly, C. Leighton, B. Jalan, R.M. Wentzcovitch, K.A. Mkhoyan, J.S. Jeong, J. Vac. Sci. Technol. A 36, 031503 (2018). https://doi.org/10.1116/1.5026298

    Article  Google Scholar 

  20. S. Sallis, D.O. Scanlon, S.C. Chae, N.F. Quackenbush, D.A. Fischer, Appl. Phys. Lett. 103, 042105 (2013). https://doi.org/10.1063/1.4816511

    Article  ADS  Google Scholar 

  21. A.L. Febvrier, A.C. Galca, ACS. Appl. Mater. Interfaces. 4, 5227–5233 (2012)

    Google Scholar 

  22. Z. Saroukhani, N. Tahmasebi, S.M. Mahdavi, A. Nemati, Bull. Mater.Sci. 38, 1645–1650 (2015)

    Google Scholar 

  23. H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, P.W. Barnes, P.M. Woodward, Chem. Mater. (2013). https://doi.org/10.1021/cm4019309

    Article  Google Scholar 

  24. H.F. Wang, Q.Z. Liu, F. Chen, G.Y. Gao, W. Wu, X.H. Chen, J. Appl. Phys. 101, 106105 (2007). https://doi.org/10.1063/1.2736629

    Article  ADS  Google Scholar 

  25. Q. Liu, J. Dai, Y. Zhang, H. Li, B. Li, Z. Liu, W. Wang, J. Alloys. Compd. 655, 389–394 (2016)

    Google Scholar 

  26. P.V. Wadekar, J. Alaria, M. O’Sullivan, N.L.O. Flack, T.D. Manning, L.J. Phillips, K. Durose, O. Lozano, S.Lucas,J.B. Claridge, M.J. Rosseinsky, Appl. Phys. Lett. 105, 052104 (2014). https://doi.org/10.1063/1.4891816

    Article  ADS  Google Scholar 

  27. D.J. Singh, Q. Xu, K.P. Ong, Appl. Phys. Lett. 104, 011910 (2014)

    ADS  Google Scholar 

  28. J. Zhang, D.Y. Zhou, L. li, Z. Chen, M. Szabadi, P. Hess, Thin. Solid. Films. 287, 101–103 (1996)

    ADS  Google Scholar 

  29. M.C.F. Alves, R.M.M. Marinho, G.P. Casali, M. Siu-Li, S.De´ Putier, M. Guilloux-Viry, A.G. Souza, E. Longo, I.T. Weber, I.M.G. Santos, V. Bouquet, J. Solid. State. Chem. 199, ,34–41 (2013)

    ADS  Google Scholar 

  30. K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, J. Phys. Chem. Solids. 76, 64–69 (2015)

    ADS  Google Scholar 

  31. D.W. Ba¨uerle, Laser Processing and Chemistry (Springer, Heidelberg, 2011)

    Google Scholar 

  32. L.M. de Oliveira, V. Bouquet, V. Dorcet, S. Ollivier, S. Députier, A. Gouveia, M. de Souza, E. Siu-Li, I. Longo, Távora, Weber, I.M.G. dos Santos, M. Guilloux-Viry, Surf. Coat. Technol. 313, 361–373 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.082

    Article  Google Scholar 

  33. H. Sano, R.H. Herberh, J. Inorg. Nucl. Chem. 30, 409–413 (1968)

    Google Scholar 

  34. U.S. Kumari, P. Suresh, A.V.P. Rao, Int. Res. J. Pure. Appl. Chem. 3(4), 347–356 (2013)

    Google Scholar 

  35. T. Chen, X.M. Li, S. Zhang, H.R. Zeng, J. Cryst. Growth. 270, 553–559 (2004)

    ADS  Google Scholar 

  36. X. Zhang, W. Ren, P. Shi, X. Chen, X. Wu, Appl. Surf. Sci. 256, 1861–1866 (2010)

    ADS  Google Scholar 

  37. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction in Diffraction III: Real Samples, 3rd edn. (Addison-Wesley, Boston, Chap. 5,1978),p. 170

    Google Scholar 

  38. M. Wua, S. Yub, L. Hea, G. Zhanga, D. Linga, W. Zhang, Appl. Surf. Sci. 292, 219–224 (2014)

    ADS  Google Scholar 

  39. S. Upadhyay, Bull. Mater.Sci. 36, 1019–1036 (2013)

    Google Scholar 

  40. S.R. Chalana, R. Vinodkumar, I. Navas, V. Ganesan, V.P. MahadevanPillai, J. Lumin. 132, 944–952 (2012)

    Google Scholar 

  41. G.K. Williamson, W.H. Hall, Acta. Metall. 1, 22–31 (1953)

    Google Scholar 

  42. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)

    Google Scholar 

  43. R.R. Mohanta, V.R.R. Medicherla, K.L. Mohanta, C. Nimai.V. Nayak.S. Solanki, Varma, Adv. Sci. Lett. 20, 584–587 (2014)

    Google Scholar 

  44. M.R. Manju, K.S. Ajay, N.M. D’Souza, S. Hunagund, R.L. .Hadimani, V. Dayal, J. Magn. Magn. Mater. 452, 23–29 (2017)

    ADS  Google Scholar 

  45. S.H. Butt, M.S. Rafique, K. Siraj, A. Latif, A. Afzal, M.S. Awan, S. Bashir, N. Iqbal, Appl. Phys. A 122, 658 (2016). https://doi.org/10.1007/s00339-016-0189-2

    Article  ADS  Google Scholar 

  46. P. Singh, B.J. Brandenburg, P.S.P. Singh, S. Singh, D. Kumar, O. Prakash, Jpn. J. Appl. Phys. 47, 3540–3545 (2008)

    ADS  Google Scholar 

  47. P. Nithyadharseni, M.V. Reddy, K.I. Ozoemena, F.I. Ezema, R.G. Balakrishna, B.V.R. Chowdari, J. Electrochem. Soc. 163(3), A540–A545 (2016)

    Google Scholar 

  48. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber, Thin. Solid. Films. 490, 36–42 (2005)

    ADS  Google Scholar 

  49. J. Socratous, K.K. Banger, Y. Vaynzof, A. Sadhanala, A.D. Brown, A. Sepe, U. Steiner, H. Sirringhaus, Adv. Funct. Mater. (2015). https://doi.org/10.1002/adfm.201404375

    Article  Google Scholar 

  50. J.A.J. Thornton, Vac. Sci. Technol. 11, 666–670 (1974)

    ADS  Google Scholar 

  51. A.M. Engwall, Z. Rao, E. Chason, Mater. Des. 110, 616–623 (2016)

    Google Scholar 

  52. Y. Yao, S.G. Lu, H. Chena, J. Appl. Phys. 96, 11 (2004)

    Google Scholar 

  53. S.H. Butt, M.S. Rafique, S. Bashir, U. Ilyas, K. Siraj, M.S. Awan, K. Mehmood, M. Rafique, A. Afzal, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.06.074

    Article  Google Scholar 

  54. J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1992). https://doi.org/10.1063/1.351309

    Article  ADS  Google Scholar 

  55. F. Paraguay, D.W. Estrada, L.D.R. Acosta, N.E. Andrade, M. Miki-Yoshidac, Thin. Solid. Films. 350, 192–202 (1999)

    ADS  Google Scholar 

  56. V. Jayasree, R. Ratheesh, V. Ganesan, V.R. Reddy, C. Sudarsanakumar, V.P. MahadevanPillai, V.U. Nayar, Thin. Solid. Films. 517, 603–608 (2008)

    ADS  Google Scholar 

  57. D. Beena, K.J. Lethy, R. Vinodkumar, V.P. MahadevanPillai, V. Ganesan, D.M. Phase, S.K. Sudheer, Appl. Surf. Sci. 255, 8334–8342 (2009). https://doi.org/10.1016/j.apsusc.2009.05.057

    Article  ADS  Google Scholar 

  58. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1971)

    Google Scholar 

  59. D. Gogova, A. Suwardi, Y.A. Kuznetsova, A.F. Zatsepin, L.A. Mochalov, A. Nezhdanov, B. Szyszka, Int. J. Adv. App. Phy. Res. 4, 000–000 (2017)

    Google Scholar 

  60. K. Kunti, K.C. Sekhar, M. Pereira, M.J.M. Gomes, S.K. Sharma, AIP. Adv. 7, 015021 (2017)

    ADS  Google Scholar 

  61. K.J. Lethy, R. Beena, V.P. Vinodkumar, V. Mahadevanpillai, V. Ganesan, D.M. Sathe, Phase, Appl. Phys. A 91, 637–649 (2008)

    ADS  Google Scholar 

  62. U. Kumar, Md.J. Ansaree, S. Upadhyay, Process. Appl. Ceram. 11 (3), 177–184 (2017)

    Google Scholar 

  63. J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data. 34(4), 1559–2259 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the SICC, University of Kerala for providing the facilities for the characterization of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Mahadevan Pillai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 392 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, J., Chalana, S.R., Prabhu, R. et al. Effect of oxygen pressure on the structural and optical properties of BaSnO3 films prepared by pulsed laser deposition method. Appl. Phys. A 125, 155 (2019). https://doi.org/10.1007/s00339-019-2432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2432-0

Navigation