Skip to main content
Log in

New and sensitive sensor for voltammetry determination of Methamphetamine in biological samples

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An electrochemical sensor was developed for determining ethamphetamine (MA) using glassy carbon electrode (GCE) modified with amine functionalized multi-walled carbon nanotube (MWCNT-NH2) and gold nanoparticles (Au-NPs) linked to nanomagnetic core shells (Fe3O4@SiO2-Si-(CH2)3-SH). Cyclic voltammetry (CV) shows that at GCE Methamphetamine has a very weak irreversible oxidation peak at about 0.80 V, but after modification of the GCE the anodic peak current increased significantly. The mechanism involve the equal number of electrons and protons. The oxidation peak mechanism was controlled via diffusion. Square-wave voltammetry (SWV) has been used as a very sensitive method for measuring MA under optimal conditions. The developed sensor, has an acceptable analytical performance in terms of linearity from 5.0 × 10− 8 to 5.0 × 10− 5 mol L− 1 (R2 = 0.999) with the detection limit 16 nM. Standard addition method was used for determination of MA in human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.A. Scott, A. Roxburgh, R. Bruno, A. Matthews, L. Burns, The impact of comorbid cannabis and methamphetamine use on mental health among regular ecstasy users. Addict. Behav. 37, 1058–1062 (2012)

    Google Scholar 

  2. J.A. Bennett, W.W. Stoops, C.R. Rush, Alternative reinforcer response cost impacts methamphetamine choice in humans. Pharmacol. Biochem. Behav. 103, 481–486 (2013)

    CAS  Google Scholar 

  3. A. Pesce, C. West, M. Rosenthal, R. West, B. Crews, C. Mikel, P. Almazan, S. Latyshev, P.S. Horn, Marijuana correlates with use of other illicit drugs in a pain patient population. Pain. Physician 13, 283–287 (2010)

    Google Scholar 

  4. K. Nakashima, A. Kaddoumi, Y. Ishida, T. Itoh, K. Taki, Determination of methamphetamine and amphetamine in abusers’ plasma and hair samples with HPLC-FL. Biomed. Chromatogr. 17, 471–476 (2003)

    CAS  Google Scholar 

  5. K.L. Klette, M.H. Jamerson, C.L. Morris-Kukoski, A.R. Kettle, J.J. Snyder, Rapid simultaneous determination of amphetamine, methamphetamine, 3, 4-methylenedioxyamphetamine, 3, 4-methylenedioxymethamphetamine, and 3, 4-methylenedioxyethylamphetamine in urine by fast gas chromatography-mass spectrometry. J. Anal. Toxicol. 29, 669–674 (2005)

    CAS  Google Scholar 

  6. W.C. Cheng, V.K.K. Mok, K.K. Chan, A.F.M. Li, A rapid and convenient LC/MS method for routine identification of methamphetamine/dimethylamphetamine and their metabolites in urine. Forensic Sci. Int. 166, 1–7 (2007)

    CAS  Google Scholar 

  7. H. Inoue, K. Kuwayama, Y.T. Iwata, T. Kanamori, K. Tsujikawa, H. Miyaguchi, Simple and simultaneous detection of methamphetamine and dimethyl sulfone in crystalline methamphetamine seizures by fast gas chromatography. Forensic Toxic. 26, 19–22 (2008)

    CAS  Google Scholar 

  8. Y.H. Wu, K.L. Lin, S.C. Chen, Y.Z. Chang, Simultaneous quantitative determination of amphetamines, ketamine, opiates and metabolites in human hair by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 22, 887–897 (2008)

    CAS  Google Scholar 

  9. J. Bagnall, S. Evans, M. Wort, A. Lubben, B. Kasprzyk, Hordern, Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. J. Chromatogr. A 1249, 115–129 (2012)

    CAS  Google Scholar 

  10. E. Saussereau, C. Lacroix, J. Gaulier, J. Goulle, On-line liquid chromatography/tandem mass spectrometry simultaneous determination of opiates, cocainics and amphetamines in dried blood spots. J. Chromatogr. B 885, 1–7 (2012)

    Google Scholar 

  11. D. Di Corcia, F. D’urso, E. Gerace, A. Salomone, M. Vincenti, Simultaneous determination in hair of multiclass drugs of abuse (including THC) by ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 899, 154–159 (2012)

    Google Scholar 

  12. D. Djozan, M.A. Farajzadeh, S.M. Sorouraddin, T. Baheri, Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid–liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromatography. J. Chromatogr. A 1248, 24–31 (2012)

    CAS  Google Scholar 

  13. L. do Nascimento, B.A.P.B. Pantaleão, M. Paranhos, Yonamine, Hollow-fiber liquid-phase microextraction of amphetamine-type stimulants in human hair samples. J. Chromatogr. A 1254, 1–7 (2012)

    Google Scholar 

  14. S.B. Madireddy, V.R. Bodeddula, S.K. Mansani, M.J. Wells, J.O. Boles, Wipe sampling of amphetamine-type stimulants and recreational drugs on selected household surfaces with analysis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Hazard. Mater. 254, 46–56 (2013)

    Google Scholar 

  15. I. Racamonde, R. Rodil, J.B. Quintana, R. Cela, In-sample derivatization-solid-phase microextraction of amphetamines and ecstasy related stimulants from water and urine. Anal. Chim. Acta 770, 75–84 (2013)

    CAS  Google Scholar 

  16. F. Wei, Y. Fan, M. Zhang, Poly (methacrylic acid-ethylene glycol dimethacrylate) monolith in‐tube solid‐phase microextraction applied to simultaneous analysis of some amphetamine derivatives in urine by capillary zone electrophoresis. Feng, Electrophore. 26, 3141–3150 (2005)

    CAS  Google Scholar 

  17. J. Sun, X. Xu, C. Wang, T. You, Analysis of amphetamines in urine with liquid–liquid extraction by capillary electrophoresis with simultaneous electrochemical and electrochemiluminescence detection. Electrophoresis 29, 3999–4007 (2008)

    CAS  Google Scholar 

  18. I. Kohler, J. Schappler, S. Rudaz, Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine. Anal. Chim. Acta 780, 101–109 (2013)

    CAS  Google Scholar 

  19. F. Zhang, L. Chen, C. Liu, P. Qiu, A. Wang, L. Li, H. Wang, Up-regulation of protein tyrosine nitration in methamphetamine-induced neurotoxicity through DDAH/ADMA/NOS pathway. Neurochem. Int. 62, 1055–1064 (2013)

    CAS  Google Scholar 

  20. C.B. Salocks, X. Hui, S. Lamel, P. Qiao, J.R. Sanborn, H.I. Maibach, Dermal exposure to methamphetamine hydrochloride contaminated residential surfaces: surface pH values, volatility, and in vitro human skin. Food Chem. Toxicol. 50, 4436–4440 (2012)

    CAS  Google Scholar 

  21. D. Wen, Y. Fu, L. Shi, C. He, L. Dong, D. Zhu, Q. He, H. Cao, J. Cheng, Fine structural tuning of fluorescent copolymer sensors for methamphetamine vapor detection. Sen. Actuat. B: Chem. 168, 283–288 (2012)

    CAS  Google Scholar 

  22. K. Watanabe, K. Okada, T. Katsu, Determination of methamphetamine in urine in situ using a methamphetamine-sensitive membrane electrode. Anal. Chim. Acta 274, 59–63 (1993)

    CAS  Google Scholar 

  23. K. Yagiuda, A. Hemmi, S. Ito, Y. Asano, Y. Fushinuki, C.Y. Chen, I. Karube, Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens. Bioelectron. 11, 703–707 (1996)

    CAS  Google Scholar 

  24. K. Luangaram, D. Boonsua, S. Soontornchai, C. Promptmas, Development of an amperometric immunosensor for the determination of methamphetamine in urine. Biocatal. Biotransfor. 20, 397–403 (2002)

    CAS  Google Scholar 

  25. C. Yi, Y. Tao, B. Wang, X. Chen, Electrochemiluminescent determination of methamphetamine based on tris (2, 2′-bipyridine) ruthenium (II) ion-association in organically modified silicate films. Anal. Chim. Acta 541, 73–81 (2005)

    Google Scholar 

  26. Z. Cai, Z. Lin, X. Chen, T. Jia, P. Yu, X. Chen, Electrochemiluminescence detection of methamphetamine based on a Ru (bpy) 32+-doped silica nanoparticles/nafion composite film modified electrode. Luminescence 25, 367–372 (2010)

    CAS  Google Scholar 

  27. E. Garrido, J. Garrido, N. Milhazes, F. Borges, A. Oliveira-Brett, Electrochemical oxidation of amphetamine-like drugs and application to electroanalysis of ecstasy in human serum. Bioelectrochemistry 79, 77–83 (2010)

    CAS  Google Scholar 

  28. M. Ebrahimi, M. Johari-Ahar, H. Hamzeiy, J. Barar, O. Mashinchian, Y. Omidi, Electrochemical impedance spectroscopic sensing of methamphetamine by a specific aptamer. BioImpacts BI 2, 91–95 (2012)

    CAS  Google Scholar 

  29. L. Svorc, M. Vojs, P. Michniak, M. Marton, M. Rievaj, D. Bustin, Electrochemical behavior of methamphetamine and its voltammetric determination in biological samples using self-assembled boron-doped diamond electrode. J. Electroanal. Chem. 717, 34–40 (2014)

    Google Scholar 

  30. A.H. Oghli, E. Alipour, M. Asadzadeh, Development of a novel voltammetric sensor for the determination of methamphetamine in biological samples on the pretreated pencil graphite electrode. RSC Adv. 5, 9674–9682 (2015)

    CAS  Google Scholar 

  31. X. Zhang, H. Ju, J. Wang, Electrochemical Sensors, Biosensors and Their Biomedical Applications, 1st edn. (Elsevier Inc, Amsterdam, 2008)

    Google Scholar 

  32. J. Wang, Analytical Electrochemistry, 2nd edn. (Wiley, New York, 2000)

    Google Scholar 

  33. C.L. Bian, Q.X. Zeng, L.J. Yang, H.Y. Xiong, X.H. Zhang, S.F. Wang, Voltammetric studies of the interaction of rutin with DNA and its analytical applications on the MWNTs–COOH/Fe3O4modified electrode. Sens. Actuators B 156, 615–620 (2011)

    CAS  Google Scholar 

  34. R.N. Goyal, V.K. Gupta, M. Oyama, N. Bachheti, Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem. Commun. 7, 803–807 (2005)

    CAS  Google Scholar 

  35. D.F. Cao, P.L. He, N.F. Hu, Electrochemical biosensors utilizing electron transfer in heme proteins immobilized on Fe3O4 nanoparticles. Analyst 128, 1268–1274 (2003)

    CAS  Google Scholar 

  36. X. Chen, J. Zhu, Z. Chen, C. Xu, Y. Wang, C. Yao, A novel bi-enzyme glucose biosensor based on three-layer Au–Fe3O4@SiO2 magnetic nanocomposite. Sens. Actuators B. Chem. 159, 220–228 (2011)

    CAS  Google Scholar 

  37. X. Peng, Y. Wang, X. Tang, W. Liu, Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(II). Dyes Pigments 91, 26–32 (2011)

    CAS  Google Scholar 

  38. M. Irandoust, M. Haghighi, Fabrication of a new modified gold electrode based on gold nanoparticles and nanomagnetic Fe3O4/SiO2–(CH2)3–SH core shell for electrochemical evaluation and determination of dinitramine herbicide in water. J. RSC Adv. 6, 49798–49805 (2016)

    CAS  Google Scholar 

  39. H. Zhang, H. Lu, N. Hu, Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes. J. Phys. Chem. B. 110, 2171–2179 (2006)

    CAS  Google Scholar 

  40. M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    CAS  Google Scholar 

  41. S. Guo, E. Wang, Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 598, 181–192 (2007)

    CAS  Google Scholar 

  42. M. Irandoust, M. Haghighi, Electrochemical study and determination of dinitramine using glassy carbon electrodes modified with multi-walled carbon nanotubes. Electrochemistry 4, 228–233 (2016)

    Google Scholar 

  43. M. Irandoust, M. Haghighi, A.A. Taherpour, M. Jafarzadeh, Electrochemical sensing of trifluralin in water by fluconazole–immobilized Fe3O4/SiO2 nanomagnetic core–shell linked to carbon nanotube modified glassy carbon electrode; an experimental and theoretical modeling. JICS 15, 719–732 (2018)

    CAS  Google Scholar 

  44. W. Nowicki, G. Nowicka, Verification of the Schulze-Hardy rule: a colloid chemistry experiment. J. Chem. Edu. 71, 624 (1994)

    CAS  Google Scholar 

  45. A.R. Zarei, R.S. Zafarghandi, Selective determination of 2,4,6-trinitrotoluene in water samples based on magnetic imprinted nanoparticles via grafting polymerization. J. Braz. Chem. Soc. 26, 741–747 (2015)

    CAS  Google Scholar 

  46. W. Stober, A. Fink, E. Bohm, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Google Scholar 

  47. S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu, J. Zhou, Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem. Eng. J. 226, 30–38 (2013)

    CAS  Google Scholar 

  48. H. Chao, S. Chengmin, T. Jifa, Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3, 701–705 (2011)

    Google Scholar 

  49. B.K. Logan, Methamphetamine-effects on human performance and behavior. Forensic Sci. Rev. 14, 133–151 (2002)

    CAS  Google Scholar 

  50. S. Wawzonek, S. Heilmann, Electrochemical oxidation of secondary amines. J. Electrochem. Soc. 121, 378–379 (1974)

    CAS  Google Scholar 

  51. N. Milhazes, P. Martins, E. Uriarte, J. Garrido, R. Calheiros, M.P.M. Marques, F. Borges, Electrochemical and spectroscopic characterisation of amphetamine-like drugs: application to the screening of 3, 4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors. Anal. Chim. Acta 596, 231–241 (2007)

    CAS  Google Scholar 

  52. L. Svorc, M. Vojs, P. Michniak, M. Marton, M. Rievaj, D. Bustin, Electrochemical behavior of methamphetamine and its voltammetric determination in biological samples using self-assembled boron-doped diamond electrode. J. Electroanal. Chemi. 717, 34–40 (2014)

    Google Scholar 

  53. E.V. Anslyn, D.A. Dougherty, Modern Physical Organic Chemistry (Sausalito, California, 2006)

    Google Scholar 

  54. A.J. Bard, L.R. Faulkner, Fundamentals and applications. Electrochem. Methods 2, 482 (2001)

    Google Scholar 

  55. A. Afkhami, F. Soltani-Felehgari, T. Madrakian, Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochim. Acta 103, 125–133 (2013)

    CAS  Google Scholar 

  56. S. Yılmaz, Adsorptive stripping voltammetric determination of zopiclone in tablet dosage forms and human urine. Colloids SurF. B: Biointerfaces 71, 79–83 (2009)

    Google Scholar 

  57. A. Afkhami, H. Ghaedi, T. Madrakian, M. Ahmadi, H. Mahmood-Kashani, Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron. 44, 34–40 (2013)

    CAS  Google Scholar 

  58. A. Afkhami, F. Soltani-Felehgari, T. Madrakian, Highly sensitive and selective determination of thiocyanate using gold nanoparticles surface decorated multi-walled carbon nanotubes modified carbon paste electrode. Sens. Actuat. B 196, 467–474 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kermanshah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Shahlaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, M., Shahlaei, M., Irandoust, M. et al. New and sensitive sensor for voltammetry determination of Methamphetamine in biological samples. J Mater Sci: Mater Electron 31, 10989–11000 (2020). https://doi.org/10.1007/s10854-020-03647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03647-6

Navigation