Skip to main content
Log in

Methamphetamine determination using label-free impedimetric aptasensor based on ceria nanocomposite

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Progress of highly sensitive analytical methods for illicit drugs is one of the serious topics in addressing new challenges based on the consumption of these drugs worldwide. Electrochemical aptamer-based sensors have been widely considered as potent analytical tools providing valuable portability, quick response, sensitivity and specificity in addition to lower charge and simplicity. Herein, a novel aptasensor is presented to determine methamphetamine (METH) via electrochemical impedance spectroscopy (EIS). Nanocerium oxide (CeO2NPs) decorated on reduced graphene oxide was fabricated to modify glassy carbon electrode (GCE) for METH determination. EIS using [Fe(CN)6]−3/−4 redox probe was exploited as a precise detection method for METH determination. The proposed label-free aptasensor was able to detect METH from 0.5 to 250 nM (limit of detection of 0.16 nM). The proposed aptasensor exhibits excellent repeatability and selectivity as well as was effectively employed to determine METH in a spiked urine sample.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi Q, Shi Y, Pan Y et al (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511. https://doi.org/10.1007/s00604-014-1349-8

    Article  CAS  Google Scholar 

  2. Stephans SE, Whittingham TS, Douglas AJ et al (1998) Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J Neurochem 71:613–621. https://doi.org/10.1046/j.1471-4159.1998.71020613.x

    Article  CAS  PubMed  Google Scholar 

  3. Shervedani RK, Bagherzadeh M (2009) Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer. Sensors Actuators B 139:657–664. https://doi.org/10.1016/j.snb.2009.03.060

    Article  CAS  Google Scholar 

  4. Sheikhzadeh E, Chamsaz M, Turner APF et al (2016) Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens Bioelectron 80:194–200. https://doi.org/10.1016/j.bios.2016.01.057

    Article  CAS  PubMed  Google Scholar 

  5. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19:1239–1257. https://doi.org/10.1002/elan.200603855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu D, Xu D, Yu X et al (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107–5113. https://doi.org/10.1021/ac050192m

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Shen L, Zhang D et al (2008) Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioelectron 23:1624–1630. https://doi.org/10.1016/j.bios.2008.01.029

    Article  CAS  PubMed  Google Scholar 

  8. Mashhadizadeh MH, Talemi RP (2016) Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor. Mater Sci Eng C 59:773–781. https://doi.org/10.1016/j.msec.2015.10.082

    Article  CAS  Google Scholar 

  9. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  10. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  11. Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263. https://doi.org/10.1021/ja067278x

    Article  CAS  PubMed  Google Scholar 

  12. Koide I, Noguchi O, Okada K et al (1998) Determination of amphetamine and methamphetamine in human hair by headspace solid-phase microextraction and gas chromatography with nitrogen–phosphorus detection. J Chromatogr B 707:99–104. https://doi.org/10.1016/S0378-4347(97)00582-3

    Article  CAS  Google Scholar 

  13. Ochoa ML, Harrington PB (2004) Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry. Anal Chem 76:985–991. https://doi.org/10.1021/ac035123r

    Article  CAS  PubMed  Google Scholar 

  14. Subedi B, Kannan K (2014) Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis. Environ Sci Technol 48:6661–6670. https://doi.org/10.1021/es501709a

    Article  CAS  PubMed  Google Scholar 

  15. Du P, Li K, Li J et al (2015) Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res 84:76–84. https://doi.org/10.1016/j.watres.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  16. Han Z, Liu H, Meng J et al (2015) Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal Chem 87:9500–9506. https://doi.org/10.1021/acs.analchem.5b02899

    Article  CAS  PubMed  Google Scholar 

  17. Mao K, Yang Z, Du P et al (2016) G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. RSC Adv 6:62754–62759. https://doi.org/10.1039/C6RA04912E

    Article  CAS  Google Scholar 

  18. Skládal P (1997) Advances in electrochemical immunosensors. Electroanalysis 9:737–745. https://doi.org/10.1002/elan.1140091002

    Article  Google Scholar 

  19. Fang S, Dong X, Ji H et al (2016) Electrochemical aptasensor for lysozyme based on a gold electrode modified with a nanocomposite consisting of reduced graphene oxide, cuprous oxide, and plasma-polymerized propargylamine. Microchim Acta 183:633–642. https://doi.org/10.1007/s00604-015-1675-5

    Article  CAS  Google Scholar 

  20. Qin X, Yin Y, Yu H et al (2016) A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens Bioelectron 77:752–758. https://doi.org/10.1016/j.bios.2015.10.050

    Article  CAS  PubMed  Google Scholar 

  21. Eskandari M, Faridbod F (2018) A printable voltammetric genosensor for tumour suppressor gene screening based on a nanocomposite of ceria NPs–GO/nano-PANI. New J Chem 42:15655–15662. https://doi.org/10.1039/C8NJ02437E

    Article  CAS  Google Scholar 

  22. Zhou D, Cui Y, Han B (2012) Graphene-based hybrid materials and their applications in energy storage and conversion. Chin Sci Bull 57:2983–2994. https://doi.org/10.1007/s11434-012-5314-9

    Article  CAS  Google Scholar 

  23. Jiang L, Yao M, Liu B et al (2012) Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. J Phys Chem C 116:11741–11745. https://doi.org/10.1021/jp3015113

    Article  CAS  Google Scholar 

  24. Jafari S, Faridbod F, Norouzi P et al (2015) Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal Chim Acta 895:80–88. https://doi.org/10.1016/j.aca.2015.05.055

    Article  CAS  PubMed  Google Scholar 

  25. Anvari L, Ghoreishi SM, Faridbod F, Ganjali MR (2021) Electrochemical determination of methamphetamine in human plasma on a nanoceria nanoparticle decorated reduced graphene oxide (rGO) glassy carbon electrode (GCE). Anal Lett 54:2509–2522. https://doi.org/10.1080/00032719.2021.1875229

    Article  CAS  Google Scholar 

  26. Pur MRK, Hosseini M, Faridbod F et al (2016) A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal Bioanal Chem 408:7193–7202. https://doi.org/10.1007/s00216-016-9856-6

    Article  CAS  PubMed  Google Scholar 

  27. Wang G, Bai J, Wang Y et al (2011) Prepartion and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scr Mater 65:339–342. https://doi.org/10.1016/j.scriptamat.2011.05.001

    Article  CAS  Google Scholar 

  28. Kumar V, Kim K-H, Park J-W et al (2017) Graphene and its nanocomposites as a platform for environmental applications. Chem Eng J 315:210–232. https://doi.org/10.1016/j.cej.2017.01.008

    Article  CAS  Google Scholar 

  29. Demir B, Yilmaz T, Guler E et al (2016) Polypeptide with electroactive endgroups as sensing platform for the abused drug ‘methamphetamine’ by bioelectrochemical method. Talanta 161:789–796. https://doi.org/10.1016/j.talanta.2016.09.042

    Article  CAS  PubMed  Google Scholar 

  30. Saberi Z, Rezaei B, Faroukhpour H, Ensafi AA (2018) A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Microchim Acta 185:303. https://doi.org/10.1007/s00604-018-2842-2

    Article  CAS  Google Scholar 

  31. Akhoundian M, Alizadeh T, Ganjali MR, Norouzi P (2019) Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs-modified electrode. Talanta 200:115–123. https://doi.org/10.1016/j.talanta.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  32. Haghighi M, Shahlaei M, Irandoust M, Hassanpour A (2020) New and sensitive sensor for voltammetry determination of methamphetamine in biological samples. J Mater Sci Mater Electron 31:10989–11000. https://doi.org/10.1007/s10854-020-03647-6

    Article  CAS  Google Scholar 

  33. Bor G, Bulut U, Man E et al (2022) Synthetic antibodies for methamphetamine analysis: design of high affinity aptamers and their use in electrochemical biosensors. J Electroanal Chem 921:116686. https://doi.org/10.1016/j.jelechem.2022.116686

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by Center of Excellence in Electrochemistry, University of Tehran, and University of Kashan for financial support of this study.

Author information

Authors and Affiliations

Authors

Contributions

LA: Conceptualization, methodology, writing, original draft preparation, and table preparation. SMG: methodology, Supervision, writing, original draft preparation. KK: methodology, writing, original draft preparation, table and figure preparation, and review. MRG: supervision, writing, original draft preparation. FF: methodology, supervision, writing, original draft preparation

Corresponding authors

Correspondence to Sayed Mehdi Ghoreishi or Kamyar Khoshnevisan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anvari, L., Ghoreishi, S.M., Khoshnevisan, K. et al. Methamphetamine determination using label-free impedimetric aptasensor based on ceria nanocomposite. J Appl Electrochem 53, 1843–1851 (2023). https://doi.org/10.1007/s10800-023-01880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01880-5

Keywords

Navigation