Skip to main content
Log in

Dielectric study and AC conduction mechanism of gamma irradiated nano‑composite of polyvinyl alcohol matrix with Cd0.9Mn0.1S

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocomposite of PVA and Cd0.9Mn0.1S was prepared by solution casting technique. The formed nanocomposite was irradiated by γ-ray with dosage ranging from 10 to 120 kGy. The dielectric properties of PVA/Cd0.9Mn0.1S nanocomposites were studied as a function of frequency (100 Hz–5 MHz) in a temperature range of (303–413 K). The data were analyzed in the dielectric loss (ε″), electric modulus (M″) and conductivity representation (σ′). Contributions from the polymer matrix and reinforcing phase are discerned in the relaxation response. The α-relaxation and a strong frequency dispersion are identified in the ε″ spectra at high temperatures, which are attributed to the segmental motion of the polymer main chain and to conductivity contribution and /or interfacial polarization, respectively. However, two peaks are detected in the M″ spectra: a main α-relaxation at high frequency and ρ-relaxation relating to the conduction process at low frequency. The temperature dependence of both the ρ-relaxation time obtained from the modulus and dc conductivity (σdc) obeys the Arrhenius law with almost similar activation energies, ≈ 0.67 eV. The change of the frequency exponent, s, with temperature reveals that the ac conductivity is governed by the correlated barrier hopping (CBH) mechanism. The dielectric constant (ε′) and dielectric loss (ε″) are dose dependent showing highest value for 30 kGy irradiated sample in the α-dipolar relaxation region. With increasing γ dose, the ac conductivity increases whereas the binding energy of the charge carriers Wm decreases supporting the dominance of the chain scission in polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Yu Rudko, A.O. Kovalchuk, V.I. Fediv, W.M. Chen, I.A. Buyanova, J. Colloid Interface Sci. 452, 33–37 (2015)

    Google Scholar 

  2. A.M. Ismail, M.I. Mohammed, S.S. Fouad, J. Mol. Struct. 1170, 51–59 (2018)

    CAS  Google Scholar 

  3. J. Lingru Kong, F. Wang, M. Ma, J. Sun, Quan, Appl. Mater. Today 16, 388–424 (2019)

    Google Scholar 

  4. D.Y. Godovsky, Adv. Polym. Sci. 153, 165–205 (2000)

    Google Scholar 

  5. S. More, R. Dhokne, S. Mo, Mater. Res. Express 4, 055302 (2017)

    Google Scholar 

  6. J. Zhang, M. Mine, Carbon 47, 1311–1320 (2009)

    CAS  Google Scholar 

  7. A.M. Ismail, M.I. Mohammed, E.G. El-Metwally, Ind. J. Phys. 93, 175–183 (2019)

    CAS  Google Scholar 

  8. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, J. Non-Cryst. Solids 357, 3751–3756 (2011)

    CAS  Google Scholar 

  9. N. Sabry, M.I. Mohammed, I.S. Yahia, Mater. Res. Express 6, 115339 (2019)

    Google Scholar 

  10. S.H. Liu, X.F. Qian, J. Yin, X.D. Ma, J.Y. Yuan, Z.K. Zhu, J. Phys. Chem. Solids 64, 455–458 (2003)

    CAS  Google Scholar 

  11. R. Tripathi, A. Kumar, T.P. Sinha, Pramana J. Phys. 72, 969 (2009)

    CAS  Google Scholar 

  12. C.Da.mian Onwudiwe, T. Arfin, A. Christien, Strydom, Synth. Electrochim. Acta 116, 217–223 (2014)

    CAS  Google Scholar 

  13. Q.Q. Liu, J.H. Shi, Z.Q. Li, D.W. Zhang, X.D. Li, Z. Sun, L.Y. Zhang, S.M. Huang, Physica B 405, 4360–4365 (2010)

    CAS  Google Scholar 

  14. C. Onwudiwe Damian, P.J. Krueger Tjaart, S. Oluwatobi Oluwafemi, A. Strydom, Christien, Appl. Surf. Sci. 290, 18–26 (2014)

    Google Scholar 

  15. R. Viswanath, H.S. Bhojya Naika, G.S. Yashavanth Kumar, P.N. Prashanth Kumar, K.N. Harisha, M.C. Prabhakara, R. Praveen, Appl. Surf. Sci. 301, 126–133 (2014)

    CAS  Google Scholar 

  16. D. Thai, P. Ben, T. Thi, N. Truong, H. Thu, Opt. Quant. Electron. 48, 362 (2016)

    Google Scholar 

  17. N.V. Hullavarad, S.S. Hullavarad, P.C. Karulkar, J. Nanosci. Nanotechnol. 8, 3272–3299 (2008)

    CAS  Google Scholar 

  18. A. Chapiro, Nucl. Instrum. Methods B 32, 111–114 (1988)

    Google Scholar 

  19. A.B. Silva, M. Arjmand, U. Sundararaj, Bretas Polymer. 55, 226–234 (2014)

    Google Scholar 

  20. Z.M. Dang, J.K. Yuan, J.W. Zha, T.Z. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660–723 (2012)

    CAS  Google Scholar 

  21. A. AbouElfadl, Arab, Nucl. Sci. Appl. 52(4), 145–158 (2019)

    Google Scholar 

  22. M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, J.Q. Almarashi, J. Mol. Struct. 1155, 666–674 (2018)

    CAS  Google Scholar 

  23. A. Lagashetty, V. Havanoor, S. Basavaraja, A. Vengataraman, Bull. Mater. Sci. 28, 477–481 (2005)

    CAS  Google Scholar 

  24. D. Saikia, P.K. Saikia, P.K. Gogoi, P. Saika, Dig. J. Nanomater. Biostruct. 6, 589–597 (2011)

    Google Scholar 

  25. J. Koteswararao, S.V. Satyanarayana, G.M. Madhu, V. Venkatesham, Heliyon 5, e01851 (2019)

    Google Scholar 

  26. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, Polym. Compos. 38, 287–298 (2015)

    Google Scholar 

  27. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953)

    Google Scholar 

  28. S. Raghu, K. Archana, C. Sharanappa, S. Ganesh, H. Devendrappa, J. Radiat. Res. Appl. Sci. 9, 117–124 (2016)

    CAS  Google Scholar 

  29. S. Nouh, T.M. Hegazy, H.M. El Hussieny, I.K. Chaaban, J. Appl. Polym. Sci. 106, 3983–3987 (2007)

    CAS  Google Scholar 

  30. D. Sinha, K.L. Sahoo, U.B. Sinha, T. Swu, Radiat. Effect. Defect 159, 587–595 (2004)

    CAS  Google Scholar 

  31. I. Šics, T.A. Ezquerra, F.J. Baltá-Calleja, V. Tupureina, M. Kalnins, J. Macromol. Sci. Phys. 39, 761–773 (2000)

    Google Scholar 

  32. L. Fan, Z. Dang, G. Wei, C.W. Nan, M. Li, Mater. Sci. Eng. B 99, 340–343 (2003)

    Google Scholar 

  33. V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, J. Polym. Res. 19, 9838 (2012)

    Google Scholar 

  34. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D Appl. Phys. 47(13), 275301 (2014)

    Google Scholar 

  35. A. Arya, A.L. Sharma, J. Phys. Condens. Matter 30, 165402 (2018)

    Google Scholar 

  36. G.A. Gaafer, F.H. Abd El-Kader, M.S. Rizk, Phys. Scr. 49, 366–370 (1994)

    Google Scholar 

  37. S. Cygan, J.R. Laghari, IEEE Trans. Nucl. Sci. 36, 1386–1390 (1989)

    CAS  Google Scholar 

  38. N.G. McCrum, B.E. Read, G. Williams, An Elastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967)

    Google Scholar 

  39. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125–143 (1976)

    CAS  Google Scholar 

  40. R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)

    CAS  Google Scholar 

  41. A. Qureshi, N.L. Singh, S. Shah, F. Singh, D.K. Avasthi, J. Macromol. Sci. 45, 265–270 (2008)

    CAS  Google Scholar 

  42. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002)

    Google Scholar 

  43. V.R. Sunitha, S. Radhakrishnan, Polym. Bull. 77, 655–670 (2020)

    CAS  Google Scholar 

  44. M. Moussa, A. Ghoneim, M.H. Abdel Rehim, S.A. Khairy, M.A. Soliman, G.M. Turky, J. Appl. Polym. Sci. 134, 45415 (2017)

    Google Scholar 

  45. A.M. El Sayed, W.M. Morsi, Polym. Compos. 34, 2031–2039 (2013)

    CAS  Google Scholar 

  46. T.G. Fox, P.J. Flory, J. Am. Chem. Soc. 70, 2384–2395 (1948)

    CAS  Google Scholar 

  47. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Composites A 34, 1187–1198 (2003)

    Google Scholar 

  48. T.A. Hanafy, Curr. Appl. Phys. 8, 527–534 (2008)

    Google Scholar 

  49. D.P. Almond, C.C. Hunter, A.R. West, J. Mater. Sci. 19, 3236–3248 (1984)

    CAS  Google Scholar 

  50. A.K. Jonscher, Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  51. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Group, London, 1983)

    Google Scholar 

  52. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, J. Alloy Comp. 464, 361–369 (2008)

    CAS  Google Scholar 

  53. H. Groothues, F. Kremer, P.G. Schouten, J.M. Warman, Adv. Mater. 7, 283–286 (1995)

    CAS  Google Scholar 

  54. A. Kumar, M. Deka, S. Banerjee, Solid State Ion 181, 609–615 (2010)

    CAS  Google Scholar 

  55. S.R. Elliot, Adv. Phys. 36, 135–217 (1987)

    Google Scholar 

  56. G.E. Pike, Phys. Rev. B 6, 1572–1579 (1972)

    CAS  Google Scholar 

  57. Y. Ben Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Appl. Phys. A 120, 1537–1543 (2015)

    CAS  Google Scholar 

  58. E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, H.M. Zidan, J. Mater. Sci. Mater. Electron. 30, 15521–15533 (2019)

    CAS  Google Scholar 

  59. V.K. Bhatnagar, K.L. Bhatida, J. Non-Cryst. Solids 214–231(1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abou Elfadl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Elfadl, A., Ismail, A.M. & Mohammed, M.I. Dielectric study and AC conduction mechanism of gamma irradiated nano‑composite of polyvinyl alcohol matrix with Cd0.9Mn0.1S. J Mater Sci: Mater Electron 31, 8297–8307 (2020). https://doi.org/10.1007/s10854-020-03365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03365-z

Navigation