Skip to main content
Log in

Synthesis and Characterization of γ-Irradiated Cadmium Sulfide/Polyvinyl Alcohol Nanocomposites Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CdS (Cadmium Sulfide)/PVA (Polyvinyl Alcohol) nanocomposite films were prepared using a solution casting method. Transmission electron microscopy (TEM) showed that CdS nanoparticles (NPs) have particle size < 20 nm. X-ray diffraction (XRD) were used to check the crystal structure, grain size of CdS NPs in Polyvinyl alcohol (PVA) and the change in grain size of CdS with γ-irradiation doses. Fourier transform infrared (FTIR) spectroscopy has confirmed the dispersion of CdS NPs in PVA for fresh and γ-irradiated films, where a substantial change in band position (OH stretching) was noted due to the interaction between CdS NPs and the host PVA polymer matrix. Conductivities (DC/AC) and dielectric properties were used to characterize the final nanocomposite films before and after γ-irradiation with distinct doses. Upon increasing the amount of CdS NPs an increase in the dielectric constant (ε1), dielectric loss (ε2) and AC conductivity of PVA films host was observed. In addition, the DC and AC conduction of the PVA films as a polymeric host material was improved with the CdS NPs content and γ-irradiation doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, and B.M. Nagabhushana, Mater. Res. Bull. 51, 438 (2014).

    CAS  Google Scholar 

  2. R.P. Chahal, S. Mahendia, A. Tomar, and S. Kumar, J. Alloys Compd. 538, 212 (2012).

    CAS  Google Scholar 

  3. K.M.L. Taylor-Pashow, J.D. Rocca, R.C. Huxford, and W. Lin, Chem. Commun. 46, 5832 (2010).

    CAS  Google Scholar 

  4. D.M. Fernandes, A.A. Winkler Hechenleitner, S.M. Lima, L.H.C. Andrade, A.R.L. Caires, and E.A. Gomez Pineda, Mater. Chem. Phys. 128, 371 (2011).

    CAS  Google Scholar 

  5. T.E. Twardowski, Introduction to nanocomposite materials: properties, processing, characterization (Lancaster: Destech Publications, 2007).

    Google Scholar 

  6. F. Antolini, E. Burresi, L. Stroea, V. Morandi, L. Ortolani, G. Accorsi, and M. Blosi, J. Nanomater. 2012, 1 (2012).

    Google Scholar 

  7. I.S. Elashmawia, N.A. Hakeema, and M. SolimanSelimb, Mater. Chem. Phys. 115, 132 (2009).

    Google Scholar 

  8. Y. Al-Douri and A.H. Reshak, Optik 126, 5109 (2015).

    CAS  Google Scholar 

  9. D. Rezaei-Ochbelagh, Y. Azizian-Kalandaragh, and A. Khodayari, Optoelectron. Adv. Mater. Rapid Commun. 4, 881 (2010).

    CAS  Google Scholar 

  10. M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, S. Vasantha, R. Balasundaraprabhu, and T.S. Senthil, J. Mater. Sci. 45, 3254 (2010).

    CAS  Google Scholar 

  11. J. Lee, D. Bhttacharryya, A.J. Easteal, and J.B. Metson, Curr. Appl. Phys. 8, 42 (2008).

    Google Scholar 

  12. C.H.V. Subba Reddy, X. Han, Q. Zho, L. Mai, and W. Chen, J. Microelectron. Eng. 83, 281 (2006).

    CAS  Google Scholar 

  13. H. Wang, P. Fang, Z. Chen, and S. Wang, Appl. Surf. Sci. 253, 8495 (2007).

    CAS  Google Scholar 

  14. A. Kharazmi, E. Saion, N. Faraji, N. Soltani, and A. Dehzangi, Chin. Phys. Let. 30, 057803 (2013).

    Google Scholar 

  15. A.M. El Sayed, H.M. Diab, and R. El-Mallawany, J. Polym. Res. 20, 255 (2013). https://doi.org/10.1007/s10965-013-0255-9.

    Article  CAS  Google Scholar 

  16. I.V. Ravindrahary, F.B. Rajashekhar, S.D. Praveena, and S. Ganesh, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 342, 29–38 (2015).

    Google Scholar 

  17. S. Shafik, K.J. Majeed, and M.I. Kamil, Int. J. Mater. Sci. Appl. 3, 25–28 (2014).

    CAS  Google Scholar 

  18. M.A. Ali Omer and E.A. Ali Bashir, J. Radiat. Res. Appl. Sci. 11, 237–241 (2018).

    CAS  Google Scholar 

  19. K. Dey, S. Ganguli, S. Ghoshal, M.A. Khan, and R.A. Khan, Open Access Libr. J 1, e639 (2014). https://doi.org/10.4236/oalib.1100639.

    Article  Google Scholar 

  20. A.D. Susilawati, Jurnal Pendidikan Fisika dan Teknologi 4, 2 (2018).

    Google Scholar 

  21. A. Abdel-Galil, M.R. Balboul, A. Atta, I.S. Yahia, and A. Sharaf, Phys. B 447, 35 (2014).

    CAS  Google Scholar 

  22. A. Abdel-Galil, H.E. Ali, and M.R. Balboul, Optik 129, 153 (2017).

    CAS  Google Scholar 

  23. N. Faraji, W.M.M. Younus, A. Kharazmi, E. Saion, M. Shahmiri, and N. Tamchek, J. Eur. Opt. Soc. Rap. Public 7, 12040 (2012).

    Google Scholar 

  24. A.R. West, Solid State Chemistry and its Application (New York: Wiley, 1984).

    Google Scholar 

  25. M. Tsukada, G. Freddi, and J.S. Grighton, J. Polym. Sci. Part B Polym. Phys. 32, 243 (1994).

    Google Scholar 

  26. J. Koteswararao, R. Abhishek, S.V. Satyanarayana, G.M. Madhu, and V. Venkatesham, Express Polym. Lett. 10, 883 (2016).

    CAS  Google Scholar 

  27. R. Seoudi, A.B. El-Bailly, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K. Abd El Hamid, and R.A. Ramadan, J. Appl. Sci. Res. 8, 658 (2012).

    CAS  Google Scholar 

  28. I.S. Elashmawi, N.A. Hakeem, M. Soliman Selim, Mater. Chem. and Phys. 115, 132 (2009).

  29. M.S. Al Salhi, S. Prasad, D. Devaraj, and Z.S. Abo Mustafa, Polymers 9, 1 (2017).

    Google Scholar 

  30. S.P. Mondal, R. Aluguri, and S.K. Ray, J. Appl. Phys. 105, 114317 (2009).

    Google Scholar 

  31. C.H. Doh, S. Kim, K.-Y. Jeong, B.S. Jim, K.H. An, B.C. Min, S.I. Moon, and M.S. Yun, Bull. Korean Chem. Soc. 27, 1175 (2006).

    CAS  Google Scholar 

  32. R.E. Cohen, Nature 358, 136 (1992).

    CAS  Google Scholar 

  33. C. Basavaraja, Y.M. Choi, H.T. Park, D.S. Huh, J.W. Lee, M. Revanasiddappa, S.C. Raghavendra, S. Khasim, and T.K. Vishnuvadhan, Bull. Korean Chem. Soc. 28, 1104 (2006).

    Google Scholar 

  34. X. Zhao, X. Yanzhi, L. Qun, M. Xiaomei, Q. Fengyu, G. Cunzhen, and H. Zhenyu, Colloids Surf. A Physicochem. Eng. Asp. 444, 180 (2014).

    CAS  Google Scholar 

  35. A.R. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectrics Press, 1983).

    Google Scholar 

  36. A.R. James, S. Priya, K. Uchino, and K. Srinivas, J. Appl. Phys. 90, 3504 (2001).

    CAS  Google Scholar 

  37. J.J. Hauser, Phys. Rev. B 27, 2543 (1983).

    CAS  Google Scholar 

  38. S.R. Elliott, Phil. Mag. 840, 507 (1979).

    Google Scholar 

  39. M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, and M.A.A. Omer, Malays. Polym. J. 13, 24 (2008).

    Google Scholar 

  40. V.S. Sangawar, R.J. Dhokne, A.U. Ubale, P.S. Chikhalikar, and S.D. Meshram, Bull. Mater. Sci. 30, 163 (2007).

    CAS  Google Scholar 

  41. V. Raja, A.K. Sharma, and V.V.R. Narasimha Rao, Mater. Lett. 58, 3242 (2004).

    CAS  Google Scholar 

  42. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. Part B Polym. Phys. 33, 1737 (1995).

    CAS  Google Scholar 

  43. M.B. Muradov, K.A. Yusifova, G.M. Eyvazova, R.K. Mammadov, and A.Z. Salahova, World J. Condens. Matter Phys. 3, 82 (2013).

    CAS  Google Scholar 

  44. S.R. Elliott, Philos. Mag. 36, 1291 (1977).

    CAS  Google Scholar 

  45. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, and P. Houenou, J. Non-Cryst. Solids 45, 57 (1981).

    CAS  Google Scholar 

  46. S. Glasstone, K.J. Laidler, and H. Eyring, The Theory of Rate Processes (New York: McGraw Hill, 1941).

    Google Scholar 

  47. M. Pollak and G.E. Pike, Phys. Rev. Lett. 28, 1494 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdel-Galil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Galil, A., Balboul, M.R. & Ali, H.E. Synthesis and Characterization of γ-Irradiated Cadmium Sulfide/Polyvinyl Alcohol Nanocomposites Films. J. Electron. Mater. 49, 2222–2232 (2020). https://doi.org/10.1007/s11664-019-07926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07926-9

Keywords

Navigation