Skip to main content
Log in

Improving the electrical and mechanical performances of embedded capacitance materials by introducing tungsten disulfide nanoflakes into the dielectric layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Embedded capacitance materials have attracted tremendous attention because of their prominent merits in comparison with discrete capacitors. However, the currently used embedded capacitance materials are suffering technical problems such as limited electrical and mechanical performances, which can hardly adapt to the rapid developments of next-generation electronics. Here, we present an effective approach for improving the electrical and mechanical performances by adding two-dimensional (2D) transition metal dichalcogenides (TMDC) tungsten disulfide (WS2) nanoflakes into the barium titanate/epoxy resin (BT/ER) system. The anti-sedimentation capability, viscosity and film-formation capability of pastes synthesized by different kinds and amounts of fillers were investigated. The introduction of semiconducting WS2 nanoflakes can work as inner micro-electrodes and is beneficial to the dispersion of BT particles in ER matrix. The dielectric constant and the peel strength can be improved to 22.54 at 1 kHz and 9.4 N/mm, respectively. The restricted dielectric loss below 0.07 at 1 kHz can be accounted by the lower conductivity of WS2 nanoflakes. The introduction of WS2 nanoflakes into BT/ER system may provide new avenues for fabrication of advanced embedded capacitance materials. Further performance improvements may be achieved by optimizing the variety, structure and chemical properties of TMDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Wu, C.T. Kuo, P.Y. Lyu, Y.L. Shen, C.I. Chien, Prog. Electromagn. Res. 121, 365 (2011)

    Google Scholar 

  2. Y.J. Xiao, W.Y. Wang, T. Lin, X.J. Chen, Y.T. Zhang, J.H. Yang, Y. Wang, Z.W. Zhou, J. Phys. Chem. C 120, 6344 (2016)

    CAS  Google Scholar 

  3. H.G. Lee, K.W. Paik, I.E.E.E.T. Comp, Pack. Man. 5, 451 (2015)

    CAS  Google Scholar 

  4. F.W. Wang, X. Zhou, W.K. Zheng, G. Jian, R. Liu, H. Shao, J. Mater. Sci. Mater. Electron. 30, 7743 (2019)

    CAS  Google Scholar 

  5. S.B. Luo, S.H. Yu, R. Sun et al., ACS Appl. Mater. Interfaces 6, 176 (2014)

    CAS  Google Scholar 

  6. F.W. Wang, C.Q. Cui, S.T. Wang, J. Wang, J. Adhes. Sci. Technol. 30, 1364 (2016)

    CAS  Google Scholar 

  7. L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 042903 (2005)

    Google Scholar 

  8. F.W. Wang, C.Q. Cui, J. Wang, J. Mater. Sci. Mater. Electron. 26, 9766 (2015)

    CAS  Google Scholar 

  9. M. Arjmand, S. Sadeghi, M. Khajehpour, U. Sundararaj, J. Phys. Chem. 121, 169 (2017)

    CAS  Google Scholar 

  10. J.K. Yuan, S.H. Yao, Z.M. Dang, A. Sylvestre, M. Genestoux, J.B. Bai, J. Phys. Chem. C 115, 5515 (2011)

    CAS  Google Scholar 

  11. P. Song, C.B. Liang et al., Compos. Sci. Technol. 18, 107698 (2019)

    Google Scholar 

  12. L. Tang, M.K. He et al., Compos. Commun. 16, 5 (2019)

    Google Scholar 

  13. G.S. Wang, A.C.S. Appl, Mater. Interfaces 2, 1290 (2010)

    CAS  Google Scholar 

  14. T. Hu, J. Juuti, H. Jantunen et al., J. Eur. Ceram. Soc. 27, 3997 (2007)

    CAS  Google Scholar 

  15. W.H. Yang, S.H. Yu, R. Sun et al., Acta Mater. 59, 5593 (2011)

    CAS  Google Scholar 

  16. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57, 660 (2012)

    CAS  Google Scholar 

  17. W.H. Yang, S.H. Yu, R. Sun et al., Ceram. Int. 38, 3553 (2012)

    CAS  Google Scholar 

  18. Z.F. Zhang, X.F. Bai, J.W. Zha, W.K. Li, Z.M. Dang, Compos. Sci. Technol. 115, 87 (2015)

    Google Scholar 

  19. Y.L. Zhang, L. Wang et al., Compos. Sci. Technol. 183, 107833 (2019)

    CAS  Google Scholar 

  20. J. Zhao, J.L. Zhang et al., Compos. A 129, 105714 (2020)

    Google Scholar 

  21. X.T. Yang, S.G. Fan et al., Compos. A 128, 105670 (2020)

    Google Scholar 

  22. Y. Wei, Y.F. Shi et al., J. Alloy Compd. 810, 15190 (2019)

    Google Scholar 

  23. H. Wang, K.Y. Zhu et al., Chem. Commun. 55, 5805 (2019)

    CAS  Google Scholar 

  24. W.K. Zheng, H. Chen, X. Zhou, R. Liu, G. Jian, H. Shao, F.W. Wang, J. Mater. Sci.: Mater. Electron. 29, 17939 (2018)

    CAS  Google Scholar 

  25. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Adv. Mater. 19, 852 (2007)

    CAS  Google Scholar 

  26. B. Wang, L. Liu, L. Huang, L. Chi, G. Liang, L. Yuan, A. Gu, Carbon 85, 28 (2015)

    CAS  Google Scholar 

  27. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L.Q. Chen, T. Jackson, Q. Wang, Nature 523, 576 (2015)

    CAS  Google Scholar 

  28. P.H. Hu, Y. Shen, Y.H. Guan, X.H. Zhang, Y.H. Lin, Q.M. Zhang, C.W. Nan, Adv. Funct. Mater. 24, 3172 (2014)

    CAS  Google Scholar 

  29. A. Ameli, S. Wang, Y. Kazemi, C.B. Park, P.A. Potschke, Nano Energy 15, 54 (2015)

    CAS  Google Scholar 

  30. S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 5, 9703 (2011)

    CAS  Google Scholar 

  31. A. Castellanos-Gomez et al., Adv. Mater. 24, 772 (2012)

    CAS  Google Scholar 

  32. H. Li, G. Lu et al., Samll 8, 682 (2012)

    CAS  Google Scholar 

  33. G.A. Salvatore, N. Münzenrieder et al., ACS Nano 7, 8809 (2013)

    CAS  Google Scholar 

  34. M. Palummo, M. Bernardi, J.C. Crossman, Nano Lett 15, 2794 (2015)

    CAS  Google Scholar 

  35. N. Peimyoo, H. Yang, J. Shang et al., ACS Nano 8, 11320 (2014)

    CAS  Google Scholar 

  36. D. Ovchinnikov, A. Allain, Y. Huang et al., ACS Nano 8, 8174 (2014)

    CAS  Google Scholar 

  37. B. Mahler, V. Hepfner, K. Liao et al., J. Am. Chem. Soc. 136, 14121 (2014)

    CAS  Google Scholar 

  38. A. Sedova, S. Khodorov, D. Ehre et al., J. Nanomater. 2017, 1 (2017)

    Google Scholar 

  39. L. Rapoport, N. Fleischer, R. Tenne, Adv. Mater. 15, 651 (2003)

    CAS  Google Scholar 

  40. D. Haba, A.J. Brunner, M. Barbezat et al., Eur. Polym. J. 84, 125 (2016)

    CAS  Google Scholar 

  41. D. Haba, A.J. Brunner, G. Pinter, Compos. Sci. Technol. 119, 55 (2015)

    CAS  Google Scholar 

  42. Q.C. Jia, X.Y. Huang, G.Y. Wang et al., J. Phys. Chem. C 120, 10206 (2016)

    CAS  Google Scholar 

  43. M.Q. Ning, M.M. Lu, J.B. Li et al., Nanoscale 7, 15734 (2015)

    CAS  Google Scholar 

  44. D. Haba, M. Barbezat, S. Avalur-Karunakaran et al., J. Polym. Sci. B. 54, 1738 (2016)

    CAS  Google Scholar 

  45. Z. Liu, J.L. Zhao et al., Compos. B 178, 107466 (2019)

    CAS  Google Scholar 

  46. X.T. Yang, Y.Q. Guo, Compos. B 175, 107070 (2019)

    Google Scholar 

  47. Z. Chen, Y.N. Liu, L.J. Fang et al., Appl. Surf. Sci. 470, 348 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51807083 and No. 51875269), the Natural Science Foundation of Jiangsu Province (Grant No. BK20170585), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xia, R., Li, X. et al. Improving the electrical and mechanical performances of embedded capacitance materials by introducing tungsten disulfide nanoflakes into the dielectric layer. J Mater Sci: Mater Electron 31, 7889–7897 (2020). https://doi.org/10.1007/s10854-020-03327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03327-5

Navigation