Skip to main content
Log in

Microstructural evolution and shear performance of AuSn20 solder joint under gamma-ray irradiation and thermal cycling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Owing to the excellent stability and mechanical strength, AuSn20 solder is of particular importance to the die attachment in aerospace power modules. An elevated requirement was put forward to improve the performance of solder joints for next-generation aerospace electronics. To this context, the microstructural evolution and mechanical performance of AuSn20 solder joints under independent γ-ray irradiation and thermal cycling were investigated in this work. The experimental results reveals that the shear forces of AuSn20 micro-joints were reduced by 17.5% and 25.3% after 1000 h of γ-ray irradiation and 200 thermal cycles, respectively, which are caused by the increase of interfacial IMC (intermetallic compound) layers and voids. Generally, the experimental data presented here are highly prospective because it provides new insights for the solder joint reliability in space environment, which could advance the research progress of aerospace devices without RHBD (radiation hardening by design) and ATCS (active thermal control system).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.R. Wu, W.W. Liu, D. Qiao, D.G. Jie, Sci. China Technol. Sci. 55, 1086–1091 (2012)

    Article  Google Scholar 

  2. P. Ehrenfreund, C. McKay, J.D. Rummel, B.H. Foing, C.R. Neal, T. Masson-Zwaan, M. Ansdell, N. Peter, J. Zarnecki, S. Mackwell, Adv. Space Res. 49, 2–48 (2012)

    Article  Google Scholar 

  3. P. Kahn, T. Imken, J. Elliott, B. Sherwood, A. Frick, D. Sheldon, J. Lunine, Acta Astronaut. 139, 390–395 (2017)

    Article  Google Scholar 

  4. R. Trivedi, U.S. Mehta, Int. J. Electron. Commun. Eng. Technol. (IJECET) 7, 75 (2016)

    Google Scholar 

  5. M. Andresen, G. Buticchi, M. Liserre, Microelectron. Reliab. 58, 119–125 (2016)

    Article  Google Scholar 

  6. C.H. van der Broeck, L.A. Ruppert, R.D. Lorenz, R.W.D. Doncker, IEEE Trans. Power Electron. 34, 8213–8229 (2018)

    Article  Google Scholar 

  7. I. Levchenko, K. Bazaka, T. Belmonte, M. Keidar, S. Xu, Adv. Mater. 30, 1802201 (2018)

    Article  Google Scholar 

  8. K.B. Abdelmlek, Z. Araoud, K. Charrada, G. Zissis, Appl. Therm. Eng. 126, 653–660 (2017)

    Article  Google Scholar 

  9. F.W. Gayle, G. Becka, A. Syed, J. Badgett, G. Whitten, T.Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, JOM 53, 17–21 (2001)

    Article  CAS  Google Scholar 

  10. V. Chidambaram, J. Hattel, J. Hald, Mater. Des. 31, 4638–4645 (2010)

    Article  CAS  Google Scholar 

  11. G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloys Compd. 476, 138–141 (2009)

    Article  CAS  Google Scholar 

  12. J.W. Yoon, H.S. Chun, S.B. Jung, J. Alloys Compd. 469, 108–115 (2009)

    Article  CAS  Google Scholar 

  13. J.W. Elmer, R.P. Mulay, Scripta Mater. 120, 14–18 (2016)

    Article  CAS  Google Scholar 

  14. X.F. Wei, Y.K. Zhang, R.C. Wang, Y. Feng, Microelectron. Reliab. 53, 748–754 (2013)

    Article  CAS  Google Scholar 

  15. B.S. Lee, C.W. Lee, J.W. Yoon, Surf. Interface Anal. 48, 493–497 (2016)

    Article  CAS  Google Scholar 

  16. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340–345 (2016)

    Article  CAS  Google Scholar 

  17. S.K. Kang, A.K. Sarkhel, J. Electron. Mater. 23, 701–707 (1994)

    Article  CAS  Google Scholar 

  18. H. Ye, M. Lin, C. Basaran, Finite Elem. Anal. Des. 38, 601–612 (2002)

    Article  Google Scholar 

  19. J. Wang, S. Xue, Z. Lv, L. Wang, H. Liu, L. Wen, J. Mater. Sci. Mater. Electron. 29, 20726–20733 (2018)

    Article  CAS  Google Scholar 

  20. J. Wang, S. Xue, Z. Lv, L. Wen, S. Liu, Appl. Sci. 8, 1706 (2018)

    Article  Google Scholar 

  21. P. Towashiraporn, K. Gall, G. Subbarayan, B. McIlvanie, B.C. Hunter, D. Love, B. Sullivan, Int. J. Fatigue 26, 497–510 (2004)

    Article  CAS  Google Scholar 

  22. Y. Qi, R. Lam, H.R. Ghorbani, P. Snugovsky, J.K. Spelt, Microelectron. Reliab. 46, 574–588 (2006)

    Article  CAS  Google Scholar 

  23. L.Y. Gao, Z.Q. Liu, C.F. Li, J. Electron. Mater. 46, 5338–5348 (2017)

    Article  CAS  Google Scholar 

  24. J.B. Libot, J. Alexis, O. Dalverny, L. Arnaud, P. Milesi, F. Dulondel, Microelectron. Reliab. 83, 64–76 (2018)

    Article  CAS  Google Scholar 

  25. L. Sun, M.H. Chen, C.C. Wei, L. Zhang, F. Yang, J. Mater. Sci. Mater. Electron. 29, 9757–9763 (2018)

    Article  CAS  Google Scholar 

  26. L. Zhang, J.G. Han, Y.H. Guo, C.W. He, Sci. Technol. Weld. Join. 17, 424–428 (2012)

    Article  Google Scholar 

  27. Z. Liang, Y. Fan, Mater. Lett. 171, 154–157 (2016)

    Article  Google Scholar 

  28. J.Y. Tsai, C.W. Chang, C.E. Ho, Y.L. Lin, C.R. Kao, J. Electron. Mater. 35, 65–71 (2006)

    Article  CAS  Google Scholar 

  29. B.S. Lee, Y.H. Ko, J.H. Bang, C.W. Lee, S. Yoo, J.K. Kim, J.W. Yoon, Microelectron. Reliab. 71, 119–125 (2017)

    Article  CAS  Google Scholar 

  30. M. Gökçen, A. Tataroğlu, Ş. Altındal, M.M. Bülbül, Radiat. Phys. Chem. 77, 74–78 (2008)

    Article  Google Scholar 

  31. J. Ciulik, M.R. Notis, J. Alloys Compd. 191, 71–78 (1993)

    Article  CAS  Google Scholar 

  32. X.F. Wei, R.C. Wang, C.Q. Peng, Y. Feng, X.W. Zhu, Prog. Nat. Sci. Mater. 21, 347–354 (2011)

    Article  Google Scholar 

  33. H.Q. Dong, V. Vuorinen, T. Laurila, M. Paulasto-Kröckela, Calphad. 43, 61–70 (2013)

    Article  CAS  Google Scholar 

  34. K.Y. Lee, M. Li, K.N. Tu, J. Mater. Res. 18, 2562–2570 (2003)

    Article  CAS  Google Scholar 

  35. L. Zhang, S.B. Xue, G. Zeng, L.L. Gao, H. Ye, J. Alloys Compd. 510, 38–45 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 51675269) and the Fundamental Research Funds for the Central Universities and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Special thanks for Prof. Azhar Ali’s assistance in polishing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Xue, S., Wang, L. et al. Microstructural evolution and shear performance of AuSn20 solder joint under gamma-ray irradiation and thermal cycling. J Mater Sci: Mater Electron 31, 7200–7210 (2020). https://doi.org/10.1007/s10854-020-03292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03292-z

Navigation