Skip to main content
Log in

Microstructural evolution of 96.5Sn-3.0Ag-0.5Cu (SAC305) solder joints induced by variation doses of gamma-irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn-Ag-Cu-based solder alloys are extensively employed in electronic packaging applications, thus necessitating in-depth reliability studies in various environmental conditions. This study investigated the microstructural evolution characteristics of gamma-irradiated 96.5Sn3.0Ag0.5Cu (SAC305) solder joints under varied gamma doses. The findings in this study involved the primary phase beta Sn (β-Sn) and near eutectic phase distributions, intermetallic compound (IMC) layer thickness, and micro-crack occurrences. Therefore, notable phase formation changes in the β-Sn and near eutectic phase distributions occurred following the microstructure changes in the gamma-irradiated solder alloy. Although the SAC305 solder matrix did not demonstrate any new structural phases, the higher radiation exposures increased the β-Sn and Ag3Sn peak intensities. Furthermore, the microstructure analysis presented a higher near eutectic phase percentage upon initial gamma radiation exposure from 5 to 15 Gy, gradually decreasing from 20 to 50 Gy. The IMC layer thickness was also positively correlated with the gamma doses, while the micro-cracks near the IMC layer-solder bulk interface were evident. Consequently, the microstructural evolution varied under different gamma radiation levels, demonstrating a profound correlation to the mechanical properties of the SAC305 solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirmed that this manuscript has no associated data.

References

  1. K. Nanda et al., Fundamental characteristics and application of radiation. GSC Adv. Res. Rev. (2021). https://doi.org/10.30574/gscarr.2021.7.1.0043

    Article  Google Scholar 

  2. A. Karmakar, J. Wang, J. Prinzie, V. De Smedt, P. Leroux, A review of semiconductor based ionising radiation sensors used in harsh radiation environments and their applications. Radiation 1(3), 194–217 (2021). https://doi.org/10.3390/radiation1030018

    Article  Google Scholar 

  3. S.P. Foo, W. Yusmawati, W. Yusoff, A. Jalar, Dimensional and structural stability of gamma irradiated stacked die quad flat no leads (QFN) (Kestabilan Dimensi Dan Struktur Dai Bertingkat Tanpa Kaki (QFN) Tersinar Gamma). Sains. Malays. 43(6), 827–832 (2014)

    CAS  Google Scholar 

  4. H. Wang, J. Ma, Y. Yang, M. Gong, Q. Wang, A review of system-in-package technologies: application and reliability of advanced packaging. Micromachines 14(6), 1149 (2023)

    Article  Google Scholar 

  5. R. Berger, R. Schwerz, M. Röllig, H. Heuer, Influence analysis of joint attributes on the fatigue progress of SnAgCu solder joints under thermomechanical loading. Microelectron. Reliab. (2023). https://doi.org/10.1016/j.microrel.2022.114870

    Article  Google Scholar 

  6. N. Ismail et al., A systematic literature review: the effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints. J. Manuf. Process. (2022). https://doi.org/10.1016/j.jmapro.2022.08.045

    Article  Google Scholar 

  7. L.M. Lee, A.A. Mohamad, Interfacial reaction of Sn–Ag–Cu lead-free solder alloy on Cu: A review. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/123697

    Article  Google Scholar 

  8. S. Zhang, H. Zhao, H. Xu, X. Fu, Accelerative reliability tests for Sn3.0Ag0.5Cu solder joints under thermal cycling coupling with current stressing. Microelectron. Reliab. (2021). https://doi.org/10.1016/j.microrel.2021.114094

    Article  Google Scholar 

  9. P.H. Yannakopoulos, A.P. Skountzos, M. Vesely, Influence of ionizing radiation in electronic and optoelectronic properties of III-V semiconductor compounds. Microelectron. J. 39(5), 732–736 (2008). https://doi.org/10.1016/j.mejo.2007.12.025

    Article  CAS  Google Scholar 

  10. J. Wang, S. Xue, Z. Lv, L. Wang, H. Liu, L. Wen, Effect of gamma-ray irradiation on microstructure and mechanical property of Sn63Pb37 solder joints. J. Mater. Sci.: Mater. Electron. 29(24), 20726–20733 (2018). https://doi.org/10.1007/s10854-018-0213-8

    Article  CAS  Google Scholar 

  11. J. Wang, S. Xue, Z. Lv, L. Wen, S. Liu, Microstructure and performance evolution of SnPbSb solder joint under γ-ray irradiation and thermal cycling. J. Materi. Sci.: Mater. Electron. 30(5), 4990–4999 (2019). https://doi.org/10.1007/s10854-019-00795-2

    Article  CAS  Google Scholar 

  12. L. Wen, S. Xue, L. Wang, H. Liu, J. Wu, Microstructural evolution and shear performance of AuSn20 solder joint under gamma-ray irradiation and thermal cycling. J. Mater. Sci.: Mater. Electron. 31(9), 7200–7210 (2020). https://doi.org/10.1007/s10854-020-03292-z

    Article  CAS  Google Scholar 

  13. N.F.N.M. Lehan et al., EDS analysis on effect of low dosage gamma radiation and micromechanical properties of SnAg3Cu0.5 solder.  J. Mater. Sci. Mater. Electron. 33(7), 4225–4236 (2022). https://doi.org/10.1007/s10854-021-07617-4

    Article  CAS  Google Scholar 

  14. W.Y. Wan Yusoff et al., Micromechanical response of SAC305 solder alloy under gamma radiation via nanoindentation approach. Solder. Surface Mount Technol. 35(1), 51–58 (2023). https://doi.org/10.1108/SSMT-09-2021-0060

    Article  Google Scholar 

  15. Q. Guan et al., Effect of gamma irradiation on microstructural evolution and mechanical properties of Sn3Ag0.5Cu solder joints. J. Mater. Res. Technol. 24, 6022–6033 (2023). https://doi.org/10.1016/j.jmrt.2023.04.148

    Article  CAS  Google Scholar 

  16. H. Xin et al., Effect of Au ion irradiation on the surface morphology, microstructure and mechanical properties of AlNbTiZr medium-entropy alloy coatings with various Al content for ATF. Surf. Coat. Technol. (2022). https://doi.org/10.1016/j.surfcoat.2022.128157

    Article  Google Scholar 

  17. A.M. Mostafa, E.A. Mwafy, Effect of dual-beam laser radiation for synthetic SnO2/Au nanoalloy for antibacterial activity. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128913

    Article  Google Scholar 

  18. A. Ali, Y.W. Chiang, R.M. Santos, X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals (2022). https://doi.org/10.3390/min12020205

    Article  Google Scholar 

  19. S.M.K. Saha et al., Structural, morphological, and optical properties of CuO thin films treated by gamma ray. Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. (2018). https://doi.org/10.1109/IC4ME2.2018.8465649

    Article  Google Scholar 

  20. S. Li, Y. Liu, H. Zhang, H. Cai, F. Sun, G. Zhang, Microstructure and hardness of SAC305 and SAC305-0.3Ni solder on Cu, high temperature treated Cu, and graphene-coated Cu substrates. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.10.005

    Article  Google Scholar 

  21. W. Paulus et al., The relationship between XRD peak intensity and mechanical properties of irradiated lead-free solder. Mater. Sci. Forum (2017). https://doi.org/10.4028/www.scientific.net/MSF.888.423

    Article  Google Scholar 

  22. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, T. Ariga, F.X. Che, Effect of ag content and the minor alloying element fe on the mechanical properties and microstructural stability of Sn–Ag–Cu solder alloy under high-temperature annealing. J. Electron. Mater. (2013). https://doi.org/10.1007/s11664-012-2343-8

    Article  Google Scholar 

  23. M. Sona, K.N. Prabhu, Review on microstructure evolution in Sn–Ag–Cu solders and its effect on mechanical integrity of solder joints. J. Mater. Sci.: Mater. Electron. (2013). https://doi.org/10.1007/s10854-013-1240-0

    Article  Google Scholar 

  24. N.F.N.M. Lehan et al., Influence of gamma radiation on eutectic phase area and hardness properties of SAC305 solder SOLDE. J. Teknol. 84(6–2), 113–118 (2022). https://doi.org/10.11113/jurnalteknologi.v84.19358

    Article  Google Scholar 

  25. W. Schule, Enhancement of diffusion due to irradiation. Z. fur Naturforschung - Sect. J. Phys. Sci. (1965). https://doi.org/10.1515/zna-1965-0405

    Article  Google Scholar 

  26. L. Qi, J. Huang, X. Zhao, H. Zhang, Effect of thermal-shearing cycling on Ag3Sn microstructural coarsening in SnAgCu solder. J. Alloys Compd. 469, 1–2 (2009). https://doi.org/10.1016/j.jallcom.2008.01.108

    Article  CAS  Google Scholar 

  27. Y. Tian, N. Ren, Z. Zhao, F. Wu, S.K. Sitaraman, Ag3Sn compounds coarsening behaviors in micro-joints. Materials (2018). https://doi.org/10.3390/ma11122509

    Article  Google Scholar 

  28. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci.: Mater. Electron. (2010). https://doi.org/10.1007/s10854-010-0086-y

    Article  Google Scholar 

  29. M. Xiong, L. Zhang, Interface reaction and intermetallic compound growth behavior of Sn–Ag–Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-018-2907-y

    Article  Google Scholar 

  30. H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. (2009). https://doi.org/10.1007/s10853-008-3125-9

    Article  Google Scholar 

  31. J.S. George, An overview of radiation effects in electronics. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5127719

    Article  Google Scholar 

  32. M. Said, N.M. Sharif, M.F.M. Nazeri, S. Kheawhom, A.A. Mohamad, Comparison of intermetallic compound growth and tensile behavior of Sn-3.0Ag-0.5Cu/Cu solder joints by conventional and microwave hybrid heating. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.01.085

    Article  Google Scholar 

  33. Q. Guan et al., Research progress on the solder joint reliability of electronics using in deep space exploration. Chin. J. Mech. Eng. (English Edition) (2023). https://doi.org/10.1186/s10033-023-00834-4

    Article  Google Scholar 

  34. X. Xiao, Fundamental mechanisms for irradiation-hardening and embrittlement: a review. Metals (2019). https://doi.org/10.3390/met9101132

    Article  Google Scholar 

  35. S. Wang, Y. Yao, X. Long, Critical review of size effects on microstructure and mechanical properties of solder joints for electronic packaging. Appl. Sci. (Switzerland) (2019). https://doi.org/10.3390/app9020227

    Article  Google Scholar 

  36. X. Li, R. Sun, Y. Wang, A review of typical thermal fatigue failure models for solder joints of electronic components. IOP Conf. Ser.: Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/242/1/012103

    Article  Google Scholar 

  37. M.Z. Yahaya, A.A. Mohamad, Hardness testing of lead-free solders: A review. Solder. Surface. Mount. Technol. (2017). https://doi.org/10.1108/SSMT-01-2017-0002

    Article  Google Scholar 

  38. L. Yang, X. Shi, S. Quan, Evolution of microstructure and effects on crack formation of Sn3.0Ag0.5Cu/Cu solder joints under accelerated thermal cycling. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab1334

    Article  Google Scholar 

  39. W.Y.W. Yusoff, R. Ismail, A. Jalar, N.K. Othman, I. Abdul Rahman, Microstructural evolution and micromechanical properties of gamma-irradiated au ball bonds. Mater. Charact. 93, 129–135 (2014). https://doi.org/10.1016/j.matchar.2014.03.024

    Article  CAS  Google Scholar 

  40. A. Ray, Radiation effects and hardening of electronic components and systems: an overview. Indian J. Phys. (2023). https://doi.org/10.1007/s12648-023-02644-9

    Article  Google Scholar 

Download references

Acknowledgements

This research was fully supported by the Tabung Amanah PPPI grant (UPNM/2023/GPPP/SG/1). The authors thank Universiti Pertahanan Nasional Malaysia (UPNM) for funding this study.

Funding

This research was fully supported by the Tabung Amanah PPPI grant (UPNM/2023/GPPP/SG/1).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study of conception, design, and visualization. NI, WYWY, NFN, and WP: performed material preparation, data collection, and analysis. NI: wrote the first draft of the manuscript, and all authors commented on previous versions. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Wan Yusmawati Wan Yusoff.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships, which could have influenced the work reported in this paper. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, N., Yusoff, W.Y.W., Lehan, N.F.N.M. et al. Microstructural evolution of 96.5Sn-3.0Ag-0.5Cu (SAC305) solder joints induced by variation doses of gamma-irradiation. J Mater Sci: Mater Electron 35, 18 (2024). https://doi.org/10.1007/s10854-023-11749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11749-0

Navigation