Skip to main content

Advertisement

Log in

Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li-rich 3d-transition metal layered oxides xLi2MnO3·(1 − x)LiMO2, one of the increasingly prospective cathode materials for high energy–density lithium-ion batteries, have attracted intensive attention by the research community. Nevertheless, their practical commercial applications are hindered by problems like the drop in the capacity and discharge voltage during cycling. Here, Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 is synthesized by sol–gel process. The outstanding electrochemical performance of which is benefited from its layered-spinel heterostructure which composited by amounts of spinel LiNi0.5Mn1.5O4. The results indicate that spinel LiNi0.5Mn1.5O4 can inhibit phase transformation as well as facilitate fast lithium-ion transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Liu, J.-G. Zhang, Z. Yang, J.P. Lemmon, materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater. 23, 929–946 (2013)

    Article  CAS  Google Scholar 

  2. N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem.-Int. Ed. 51, 9994–10024 (2012)

    Article  CAS  Google Scholar 

  3. B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R-Rep. 73, 51–65 (2012)

    Article  CAS  Google Scholar 

  4. H. Zhao, L. Gao, W. Qiu, X. Zhang, Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating. J. Power Sources. 132, 195–200 (2004)

    Article  CAS  Google Scholar 

  5. D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008)

    Article  CAS  Google Scholar 

  6. Q. Zhao, Y. Zhang, Y. Meng, Y. Wang, Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery. Nano Energy 34, 408–420 (2017)

    Article  CAS  Google Scholar 

  7. G. Kobayashi, Y. Irii, F. Matsumoto, A. Ito, Y. Ohsawa, S. Yamamoto, Y. Cui, J.-Y. Son, Y. Sato, Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J. Power Sources 303, 250–256 (2016)

    Article  CAS  Google Scholar 

  8. J.-Z. Kong, H.-F. Zhai, X. Qian, M. Wang, Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J. Alloys Compd. 694, 848–856 (2017)

    Article  CAS  Google Scholar 

  9. Y.-K. Sun, M.-J. Lee, C.S. Yoon, J. Hassoun, The role of AlF3 Coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192–1196 (2012)

    Article  CAS  Google Scholar 

  10. F. Wu, X. Zhang, T. Zhao, L. Li, Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 3773–3781 (2015)

    Article  CAS  Google Scholar 

  11. Z. Wang, E. Liu, C. He, C. Shi, Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J. Power Sources 236, 25–32 (2013)

    Article  CAS  Google Scholar 

  12. S. Li, Y. Liang, J. Xie, L. Ai, Compatibility between lithium difluoro (oxalate) borate-based electrolytes and Li1.2Mn0.54Ni0.13Co0.13O2 cathode for lithium-ion batteries. J. Electroanal. Chem. 823, 688–696 (2018)

    Article  CAS  Google Scholar 

  13. A.R. Armstrong, M. Holzapfel, P. Novak, C.S. Johnson, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode LiNi0.2Li0.2Mn0.6O2. J. Am. Chem. Soc. 128, 8694–8698 (2006)

    Article  CAS  Google Scholar 

  14. X. Yu, Y. Lyu, L. Gu, H. Yu, Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014)

    Article  Google Scholar 

  15. A. Boulineau, L. Croguennec, C. Delmas, F. Weill, Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem. Mater. 21, 4216–4222 (2009)

    Article  CAS  Google Scholar 

  16. N. Li, R. An, Y. Su, F. Wu, The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J. Mater. Chem. A 1, 9760–9767 (2013)

    Article  CAS  Google Scholar 

  17. S.S. Shin, Y.K. Sun, K. Amine, Synthesis and electrochemical properties of Li[Li(1–2x)/3NixMn(2–x)/3]O2 as cathode materials for lithium secondary batteries. J. Power Sources 112, 634–638 (2002)

    Article  CAS  Google Scholar 

  18. D. Mohanty, S. Kalnaus, R.A. Meisner, K.J. Rhodes, Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.5O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229, 239–248 (2013)

    Article  CAS  Google Scholar 

  19. J. Zhang, R. Gao, L. Sun, Z. Li, Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. PCCP 18, 25711–25720 (2016)

    Article  CAS  Google Scholar 

  20. Q. Fu, F. Du, X. Bian, Y. Wang, Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4. J. Mater. Chem. A 2, 7555–7562 (2014)

    Article  CAS  Google Scholar 

  21. Y. Cai, Y. Huang, X. Wang, D. Jia, Long cycle life, high rate capability of truncated octahedral LiMn2O4 cathode materials synthesized by a solid-state combustion reaction for lithium ion batteries. Ceram. Int. 40, 14039–14043 (2014)

    Article  CAS  Google Scholar 

  22. A. Iqbal, Y. Iqbal, L. Chang, S. Ahmed, Enhanced electrochemical performance of La- and Zn-co-doped LiMn2O4 spinel as the cathode material for lithium-ion batteries. J. Nanopart. Res. 14, 1206 (2012)

    Article  Google Scholar 

  23. N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011)

    Article  CAS  Google Scholar 

  24. J. Cha, J.-G. Han, J. Hwang, J. Cho, Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J. Power Sources 357, 97–106 (2017)

    Article  CAS  Google Scholar 

  25. F. Wu, N. Li, Y. Su, H. Shou, Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 25, 3722–3726 (2013)

    Article  CAS  Google Scholar 

  26. J. Liu, A. Manthiram, Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode. J. Mater. Chem. 20, 3961–3967 (2010)

    Article  CAS  Google Scholar 

  27. X.-Y. Qiu, Q.-C. Zhuang, Q.-Q. Zhang, R. Cao, Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy. J. Electroanal. Chem. 687, 35–44 (2012)

    Article  CAS  Google Scholar 

  28. X. Jin, Q. Xu, H. Liu, X. Yuan, Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim. Acta 136, 19–26 (2014)

    Article  CAS  Google Scholar 

  29. Z. Huang, X. Li, Y. Liang, Z. He, Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries. Solid State Ionics 282, 88–94 (2015)

    Article  CAS  Google Scholar 

  30. K.M. Shaju, G.V. Subba-Rao, B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 48, 145–151 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the High Value Patent Conversion Implementation Project (No. 18ZC1LA014), the Gansu Province Science and Technology Major Project (No.17ZD2GC011), the Qinghai Science and Technology Plan (2019-ZJ-7038) and the Lanzhou University of Technology Hongliu First-class Discipline Construction Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Fu, X., Liang, Y. et al. Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries. J Mater Sci: Mater Electron 31, 5376–5384 (2020). https://doi.org/10.1007/s10854-020-03098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03098-z

Navigation