Skip to main content

Advertisement

Log in

Preparation of high-density Bi2O3 ceramics by low temperature sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2O3 ceramics with high density were prepared by low temperature sintering using acetic acid as the co-solvent. The effect of acetic acid concentration, pressure, temperature and holding time during sintering on the densification of Bi2O3 ceramics was investigated. The Bi2O3 ceramic with a relative density of 98.31% was obtained by low temperature sintering at 270 ℃/330 MPa for 140 min using 3 mol/L acetic acid solution. The densification mechanism for low temperature sintering Bi2O3 ceramic followed "dissolution–precipitation–growth", which is different from the densification mechanism of the traditional high-temperature sintered ceramics. The Bi2O3 ceramic with a permittivity (εr) ~ 32.2, a quality factor (Qf) ~ 16,425 GHz and a grain size ~ 4.2 μm was obtained. The study provides a new method of ceramic development by low temperature sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, New York, 2005)

    Google Scholar 

  2. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  3. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  4. M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater Sci 20, 151–170 (2016)

    Article  CAS  Google Scholar 

  5. M. Valant, D. Suvorov, Processing and dielectric properties of sillenite compounds Bi12MO20-d (M = Si, Ge, Ti, Pb, Mn, B1/2P1/2). J. Am. Ceram. Soc. 84, 2900–2904 (2001)

    Article  CAS  Google Scholar 

  6. M. Udovic, M. Valant, D. Suvorov, Dielectric characterization of ceramics from the TiO2–TeO2 system. J. Eur. Ceram. Soc. 21, 1735–1738 (2001)

    Article  CAS  Google Scholar 

  7. M. Udovic, M. Valant, D. Suvorov, Phase formation and dielectric characterization of the Bi2O3–TeO2 system prepared in an oxygen atmosphere. J. Am. Ceram. Soc. 87, 591–597 (2004)

    Article  CAS  Google Scholar 

  8. D. Zhou, C.A. Randall, H. Wang et al., Microwave dielectric ceramics in Li2O–Bi2O3–MoO3 system with ultra-low sintering temperatures. J. Am. Ceram. Soc. 93, 1096–1100 (2010)

    Article  CAS  Google Scholar 

  9. D. Zhou, L.X. Pang, D.W. Wang et al., Novel water-assisting low firing MoO3 microwave dielectric ceramics. J. Eur. Ceram. Soc. 39, 2374–2378 (2019)

    Article  CAS  Google Scholar 

  10. J. Guo, H. Guo, A.L. Baker et al., Cold sintering: a paradigm shift for processing and integration of ceramics. Chem. Int. Edit. 55, 11457–11461 (2016)

    Article  CAS  Google Scholar 

  11. J.P. Maria, X. Kang, R.D. Floyd et al., Cold sintering: current status and prospects. J. Mater. Res. 32, 3205–3218 (2017)

    Article  CAS  Google Scholar 

  12. S. Funahashi, J. Guo, H. Guo et al., Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100, 546–553 (2017)

    Article  CAS  Google Scholar 

  13. L. Li, W.B. Hong, S. Yang et al., Effects of water content during cold sintering process of NaCl ceramics. J. Alloy. Compd. 787, 352–357 (2019)

    Article  CAS  Google Scholar 

  14. Yang J. Cold sintering preparation and electrical properties of ZnO-based ceramics. Guangxi, China: Master's thesis of Guangxi University, 2018. https://cdmd.cnki.com.cn/Article/CDMD-10593-1019032924.htm

  15. C.F. Xing, J.X. Bi, H.T. Wu, Effect of Co-substitution on microwave dielectric properties of Li3 (Mg1-xCox)2NbO6 (0.00≤ x≤ 0.10) ceramics. J. Alloy. Compd. 719, 58–62 (2017)

    Article  CAS  Google Scholar 

  16. H. Zheng, S. Yu, L. Li et al., Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1–x)MgMoO4-xTiO2 composite ceramics. J. Eur. Ceram. Soc. 37, 4661–4665 (2017)

    Article  CAS  Google Scholar 

  17. Y. Zhao, P. Zhang, High-Q microwave dielectric ceramics using Zn3Nb1.88Ta0.12O8 solid solutions. J. Alloy. Compd. 662, 455–460 (2016)

    Article  CAS  Google Scholar 

  18. Y.C. Chen, Y.N. Wang, C.H. Hsu, Enhancement microwave dielectric properties of Mg2SnO4 ceramics by substituting Mg2+ with Ni2+. Mater. Chem. Phys. 133, 829–833 (2012)

    Article  CAS  Google Scholar 

  19. R.M. Kershi, F.M. Ali, M.A. Sayed, Influence of rare earth ion substitutions on the structural, optical, transport, dielectric, and magnetic properties of superparamagnetic iron oxide nanoparticles. J. Adv Ceram. 7, 218–228 (2018)

    Article  CAS  Google Scholar 

  20. A. Manan, Z. Ullah, A.S. Ahmad et al., Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3–xCa0.6La0.8/3TiO3 ceramics. J. Adv Ceram. 7, 72–78 (2018)

    Article  CAS  Google Scholar 

  21. Y. Mei, S. Pandey, W. Long et al., Processing and characterizations of flash sintered ZnO–Bi2O3–MnO2 varistor ceramics under different electric fields. J. Eur. Ceram. Soc. 40, 1330–1337 (2019)

    Article  Google Scholar 

  22. D. Xu, X. Yue, J. Song et al., Improved dielectric and non-ohmic properties of (Zn + Zr) codoped CaCu3Ti4O12 thin films. Ceram. Int. 45, 11421–11427 (2019)

    Article  CAS  Google Scholar 

  23. X. Yue, W. Long, J. Liu et al., Enhancement of dielectric and non-ohmic properties of graded Co doped CaCu3Ti4O12 thin films. J. Alloy. Compd. 816, 152582 (2020)

    Article  CAS  Google Scholar 

  24. D. Xu, X. Yue, Y. Zhang et al., Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J. Alloy. Compd. 773, 853–859 (2019)

    Article  CAS  Google Scholar 

  25. M.A. Muñoz-Márquez, M. Zarrabeitia, E. Castillo-Martínez et al., Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. ACS Appl. Mater. Inter. 7, 7801–7808 (2015)

    Article  Google Scholar 

  26. J. Varghese, T. Siponkoski, M. Nelo et al., Microwave dielectric properties of low-temperature sinterable α-MoO3. J. Eur. Ceram. Soc. 38, 1541–1547 (2018)

    Article  CAS  Google Scholar 

  27. H.T. Fan, S.S. Pan, X.M. Teng et al., δ-Bi2O3 thin films prepared by reactive sputtering: fabrication and characterization. Thin Solid Films 513, 142–147 (2006)

    Article  CAS  Google Scholar 

  28. G. Liu, S. Li, Y. Lu et al., Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3 → γ-Bi2O3 → α-Bi2O3 transformation in a facile precipitation method. J. Alloy. Compd. 689, 787–799 (2016)

    Article  CAS  Google Scholar 

  29. E.A. Abdullah, A.H. Abdullah, Z. Zainal et al., Synthesis and characterisation of penta-bismuth hepta-oxide nitrate, Bi5O7NO3, as a new adsorbent for methyl orange removal from an aqueous solution. J. Chem. 9, 2429–2438 (2012)

    CAS  Google Scholar 

  30. S. Yu, G. Zhang, Y. Gao et al., Single-crystalline Bi5O7NO3 nanofibers: hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties. J. Colloid Interface Sci. 354, 322–330 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Guangxi Innovation-Driven Development Project (Grant No. AA18118001) and Guangxi Key Laboratory of Information Materials Foundation (Grant No. 191027-Z)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guisheng Zhu or Huarui Xu.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zhu, G., Xu, H. et al. Preparation of high-density Bi2O3 ceramics by low temperature sintering. J Mater Sci: Mater Electron 31, 5214–5220 (2020). https://doi.org/10.1007/s10854-020-03081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03081-8

Navigation