Skip to main content
Log in

Effects of attrition milling on the microstructure and piezoelectric properties of BiFeO3–BaTiO3 ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Effects of attrition milling on densification behavior, phase evolution, microstructure development, and piezoelectric properties were investigated in 0.75 BiFeO3–0.25 BaTiO3 ceramics sintered at temperatures from 940 to 1040 ℃. The ball-milled sample showed abrupt non-uniform grain growth at sintering temperature around 980 ℃ which led to the increase of a rhombohedral distortion due to enhancement in chemical homogeneity. However, the density decreased significantly at sintering temperatures above 960 ℃. Attrition milling mitigated significantly the decrease in the density and inhibited abrupt inhomogeneous grain growth. Co-existence of a rhombohedral and a pseudo-cubic phase was verified in the 0.75 BiFeO3–0.25 BaTiO3 ceramics sintered at 1000 ℃ by Rietveld refinement using X-ray diffraction. The attrition-milled sample had a larger amount of the pseudo-cubic phase than the ball-milled sample because of ZrO2 incorporation during attrition milling. Attrition milling enhanced the dielectric constant and the electromechanical factor (kp), which resulted from the increased density and the donor doping effect due to ZrO2 incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimurac, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013

    Article  CAS  Google Scholar 

  2. H. Wu, Y. Zhang, J. Wu, J. Wang, S.J. Pennycook, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201902911

    Article  Google Scholar 

  3. Q. Liu, Y. Zhang, J. Gao, Z. Zhou, H. Wang, K. Wang, Energy Environ. Sci. 11, 3531 (2018). https://doi.org/10.1039/c8ee02758g

    Article  CAS  Google Scholar 

  4. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96, 3677 (2013). https://doi.org/10.1111/jace.12715

    Article  CAS  Google Scholar 

  5. D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I.M. Reaney, J. Adv. Dielect. 8, 1830004 (2018). https://doi.org/10.1142/S2010135X18300049

    Article  CAS  Google Scholar 

  6. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, Adv. Mater. 27, 6976 (2015). https://doi.org/10.1002/adma.201502424

    Article  CAS  Google Scholar 

  7. J. Chen, J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, S. Zhang, J. Am. Ceram. Soc. 103, 374 (2020). https://doi.org/10.1111/jace.16755

    Article  CAS  Google Scholar 

  8. Q. Li, J. Wei, T. Tu, J. Cheng, J. Chen, J. Am. Ceram. Soc. 100, 5573 (2017). https://doi.org/10.1111/jace.15079

    Article  CAS  Google Scholar 

  9. S. Murakami, N.T.A.F. Ahmed, D. Wang, A. Feteira, D.C. Sinclair, I.M. Reaney, J. Euro. Ceram. Soc. 38, 4220 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.05.019

    Article  CAS  Google Scholar 

  10. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  CAS  Google Scholar 

  11. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x

    Article  CAS  Google Scholar 

  12. S. Kim, G.P. Khanal, H.-W. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, J. Appl. Phys. 122, 164105 (2017). https://doi.org/10.1063/1.4999375

    Article  CAS  Google Scholar 

  13. D.V. Karpinsky, M.V. Silibin, S.V. Trukhanov, A.V. Trukhanov, A.L. Zhaludkevich, S.I. Latushka, D.V. Zhaludkevich, V.A. Khomchenko, D.O. Alikin, A.S. Abramov, T. Maniecki, W. Maniukiewicz, M. Wol, V. Heitmann, A.L. Kholkin, Nanomaterials 10, 801 (2020). https://doi.org/10.3390/nano10040801

    Article  CAS  Google Scholar 

  14. D.V. Karpinsky, M.V. Silibin, A.V. Trukhanov, A.L. Zhaludkevich, S.I. Latushka, D.V. Zhaludkevich, V. Sikolenko, V.A. Khomchenko, J. Alloys Compd. 803, 1136–1140 (2019). https://doi.org/10.1016/j.jallcom.2019.06.145

    Article  CAS  Google Scholar 

  15. F. Kang, L. Zhang, B. Huang, P. Mao, Z. Wang, Q. Sun, J. Wang, D. Hu, J. Euro. Ceram. Soc. 40, 1198 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.026

    Article  CAS  Google Scholar 

  16. I. Calisir, D.A. Hall, J. Mater. Chem. C 6, 134 (2018). https://doi.org/10.1039/C7TC04122E

    Article  CAS  Google Scholar 

  17. I. Calisir, A.K. Kleppe, A. Feteira, D.A. Hall, J. Mater. Chem. C 7, 10218 (2019). https://doi.org/10.1039/C9TC01583C

    Article  CAS  Google Scholar 

  18. G. Wang, Z. Fan, S. Murakami, Z. Lu, D. Hall, D. Sinclair, A. Feteira, X. Tan, J. Jones, A.K. Kleppe, D. Wang, I.M. Reaney, J. Mater. Chem. A 7, 21254 (2019). https://doi.org/10.1039/C9TA07904A

    Article  CAS  Google Scholar 

  19. T. Zheng, J. Wu, Adv. Electron. Mater. (2020). https://doi.org/10.1002/aelm.202000079

    Article  Google Scholar 

  20. R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cótica, I.A. Santos, A.A. Coelho, J. Appl. Phys. 112, 104112 (2012). https://doi.org/10.1063/1.4766450

    Article  CAS  Google Scholar 

  21. L.-F. Zhu, X.-W. Lei, L. Zhao, M.I. Hussain, G.-Z. Zhao, B.-P. Zhang, Ceram. Int. 45, 20266 (2019). https://doi.org/10.1016/j.ceramint.2019.06.300

    Article  CAS  Google Scholar 

  22. Y.J. Lee, J.S. Kim, S.H. Han, H.-W. Kang, H.-G. Lee, C.I. Cheon, J. Kor. Phys. Soc. 61(6), 947 (2012)

    Article  CAS  Google Scholar 

  23. D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, J. Euro. Ceram. Soc. 33, 3023 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.029

    Article  CAS  Google Scholar 

  24. Y. Wan, Y. Li, Q. Li, W. Zhou, Q. Zheng, X. Wu, C. Xu, B. Zhu, D. Lin, J. Am. Ceram. Soc. 97(6), 1809 (2014). https://doi.org/10.1111/jace.12827

    Article  CAS  Google Scholar 

  25. D.J. Kim, M.H. Lee, J.S. Park, M.-H. Kim, T.K. Song, W.-J. Kim, K.W. Jang, S.S. Kim, D. Do, J. Kor. Phys. Soc. 66(7), 1115 (2015)

    Article  CAS  Google Scholar 

  26. T. Zheng, J. Wu, J. Alloys Compd. 676, 505 (2016). https://doi.org/10.1016/j.jallcom.2016.03.205

    Article  CAS  Google Scholar 

  27. L.-F. Zhu, B.-P. Zhang, J.-Q. Duan, B.-W. Xun, N. Wang, Y.-C. Tang, G.-L. Zhao, J. Euro. Ceram. Soc. 38, 3463 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.044

    Article  CAS  Google Scholar 

  28. H.W. Joo, D.S. Kim, J.S. Kim, C.I. Cheon, Ceram. Int. 42, 10399 (2016). https://doi.org/10.1016/j.ceramint.2016.03.179

    Article  CAS  Google Scholar 

  29. D.S. Kim, J.S. Kim, C.I. Cheon, J. Kor. Ceram. Soc. 53(2), 162 (2016). https://doi.org/10.4191/kcers.2016.53.2.162

    Article  CAS  Google Scholar 

  30. S. Cheng, B.-P. Zhang, L. Zhao, K.-K. Wang, J. Mater. Chem. C 6, 3982 (2018). https://doi.org/10.1039/C8TC00329G

    Article  CAS  Google Scholar 

  31. M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, T.K. Song, W.-J. Kim, J.S. Park, D. Do, J. Am, Ceram. Soc. 102, 2666 (2019). https://doi.org/10.1111/jace.16126

    Article  CAS  Google Scholar 

  32. J. Chen, J. Cheng, J. Alloys Compd. 589, 115 (2014). https://doi.org/10.1016/j.jallcom.2013.11.169

    Article  CAS  Google Scholar 

  33. I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, T. Watanabe, J. Hayashi, H. Yabuta, M. Kubota, T. Fukui, S. Wada, Jpn. J. Appl. Phys. 50, 09ND07 (2011). https://doi.org/10.1143/JJAP.50.09ND07

    Article  CAS  Google Scholar 

  34. D.S. Kim, C.I. Cheon, S.S. Lee, J.S. Kim, Appl. Phys. Lett. 109, 202902 (2016)

    Article  Google Scholar 

  35. R.A. Malik, A. Hussain, T.K. Song, W.-J. Kim, R. Ahmed, Y.S. Sung, M.-H. Kim, Ceram. Int. 43, S198 (2017). https://doi.org/10.1016/j.ceramint.2017.05.298

    Article  CAS  Google Scholar 

  36. S. Kim, G.P. Khanal, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, J. Appl. Phys. 122, 014103 (2017). https://doi.org/10.1063/1.4991492

    Article  CAS  Google Scholar 

  37. A. Maqbool, R.A. Malik, A. Hussain, F. Akram, M.A. Rafiq, M. Saleem, F.A. Khalid, T.-K. Song, W.-J. Kim, M.-H. Kim, J. Electroceram. 41, 99 (2018). https://doi.org/10.1007/s10832-018-0172-8

    Article  CAS  Google Scholar 

  38. D. Wang, Z. Fan, W. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. Sun, Q. Zhao, X. Tan, I.M. Reaney, A.C.S. Appl, Energy Mater. 1, 4403 (2018). https://doi.org/10.1021/acsaem.8b01099

    Article  CAS  Google Scholar 

  39. S. Murakami, D. Wang, A. Mostaed, A. Khesro, A. Feteira, D.C. Sinclair, Z. Fan, X. Tan, I.M. Reaney, J. Am. Ceram. Soc. 101, 5428 (2018). https://doi.org/10.1111/jace.15749

    Article  CAS  Google Scholar 

  40. Y. Qin, J. Yang, P. Xiong, W. Huang, J. Song, L. Yin, P. Tong, X. Zhu, Y. Sun, J Mater Sci: Mater Electron 29, 7311 (2018). https://doi.org/10.1007/s10854-018-8720-1

    Article  CAS  Google Scholar 

  41. M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, T.K. Song, W.-J. Kim, D. Do, A.C.S. Appl, Electron. Mater. 1, 1772 (2019). https://doi.org/10.1021/acsaelm.9b00315

    Article  CAS  Google Scholar 

  42. I. Calisir, A.A. Amirov, A.K. Kleppe, D. Hall, J. Mater. Chem. A 6, 5378 (2018). https://doi.org/10.1039/C7TA09497C

    Article  CAS  Google Scholar 

  43. U.-C. Oh, Y.-S. Chung, D.-Y. Kim, J. Am. Ceram. Soc. 71, 854 (1988)

    Article  CAS  Google Scholar 

  44. S.A. Khan, T. Ahmed, F. Akram, J. Bae, S.Y. Choi et al., J. Kor. Ceram. Soc. 57(3), 290 (2020). https://doi.org/10.1007/s43207-020-00039-8

    Article  CAS  Google Scholar 

  45. Z. Dai, Y. Akishige, Mater. Lett. 88, 36–39 (2012)

    Article  CAS  Google Scholar 

  46. R.A.M. Gotardo, I.A. Santos, L.F. Cótica, É.R. Botero, D. Garcia, J.A. Eiras, Scr. Mater. 61(5), 508 (2009)

    Article  CAS  Google Scholar 

  47. M.T. Buscaglia, M. Bassoli, V. Buscaglia, J. Am. Ceram. Soc. 88(9), 2374 (2005). https://doi.org/10.1111/j.1551-2916.2005.00451.x

    Article  CAS  Google Scholar 

  48. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, K.S. Choi, Ceram. Int. 46(6), 7074 (2020). https://doi.org/10.1016/j.ceramint.2019.11.199

    Article  CAS  Google Scholar 

  49. X. Zhang, J. Yan, R. Shi, Z. Wang, M. Zhang, Q. Du, X. Qi, J. Mater. Sci. Mater. Electron. 31, 1502 (2020). https://doi.org/10.1007/s10854-019-02665-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2021R1F1A1064271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae Il Cheon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1442 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, SH., Kim, K.S., Kim, J.S. et al. Effects of attrition milling on the microstructure and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Korean Ceram. Soc. 60, 669–678 (2023). https://doi.org/10.1007/s43207-023-00291-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00291-8

Keywords

Navigation