Skip to main content

Advertisement

Log in

Two-step sintering for improving the energy storage properties of 0.8BaTiO3–0.2BiYO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, 0.8BaTiO3–0.2BiYO3 was prepared by traditional process. The samples were sintered with tradition method and two-step sintering method, respectively. The effects of different sintering conditions on grain size, density and dielectric properties were investigated. When the samples heated to 1100 °C, cooled to 1000 °C and held for 20 h, the relative density and the recoverable energy density of the samples reached the maximum (0.379 J/cm3 with energy efficiency of 72.8%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Wei, J. Zhang, M. Zhang, Z. Yao, H. Chen, C. Yang, Relaxor behavior of BaTiO3-BiYO3 perovskite materials for high energy density capacitors. Ceram. Int. 43(6), 4768–4774 (2017)

    Article  Google Scholar 

  2. M. Wei, J. Zhang, M. Zhang, Z. Yao, H. Chen, C. Yang, Effect of BiMO3 (M = Al. In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43(13), 9593–9599 (2017)

    Article  Google Scholar 

  3. M. Wei, J. Zhang, M. Zhang, Z. Yao, H. Chen, C. Yang, Effect of Bi2O3 additive on dielectric properties of BaTiO3-based ceramics for improving energy density. Adv. Appl. Ceram. 116(8), 439–444 (2017)

    Article  Google Scholar 

  4. M. Wei, J. Zhang, M. Zhang, Z. Yao, H. Chen, C. Yang, Effect of BiNbO4 doping on the dielectric properties of BaTiO3 ceramics. Int. J. Appl. Ceram. Technol. https://doi.org/10.1111/ijac.12775

  5. M. Wei, J. Zhang, M. Zhang, Z. Yao, H. Chen, C. Yang, Effect of multiple times pre-sintering on the dielectric properties of TiO2/glass composite. J. Mater. Sci: Mater. Electron. 28(1), 526–531 (2017)

    Google Scholar 

  6. R.L. Macklin, Electrostatic energy storage. Nature 262(5565), 171 (1976)

    Article  Google Scholar 

  7. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)

    Article  Google Scholar 

  8. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics. J. Am. Ceram. Soc. 92(1), 110–118 (2009)

    Article  Google Scholar 

  9. S.S.N. Bharadwaja, J.R. Kim, H. Ogihara, L.E. Cross, S. Trolier-McKinstry, C.A. Randall, Critical slowing down mechanism and reentrant dipole glass phenomena in (1 − x)BaTiO3 − xBiScO3(0.1≤x≤0.4): the high energy density dielectrics. Phys. Rev. B 83(2), 024106 (2011)

    Article  Google Scholar 

  10. X. Huang, H. Hao, S. Zhang, H. Liu, W. Zhang, Q. Xu, M. Cao, J. Am. Ceram. Soc. 97, 1797–1801 (2014)

    Article  Google Scholar 

  11. Y. Wang, Y. Pu, P. Zhang, Investigation of dielectric relaxation in BaTiO3 ceramics modified with BiYO3 by impedance spectroscopy. J. Alloys Compd. 653, 596–603 (2015)

    Article  Google Scholar 

  12. X. Huang, H. Liu, H. Hao, S. Zhang, Y. Sun, W. Zhang, L. Zhang, M. Cao, Microstructure effect on dielectric properties of MgO-doped BaTiO3–BiYO3 ceramics. Ceram. Int. 41(6), 7489–7495 (2015)

    Article  Google Scholar 

  13. Y.D. Hou, L. Cui, M.J. Si, H.Y. Ge, M.K. Zhu, H. Yan, The variation of Curie temperature and dielectric relaxor behaviour in the nominal (1 − x)BaTiO3 − xBiAlO3 system. J. Electroceram. 28(2–3), 105–108 (2012)

    Article  Google Scholar 

  14. M. Liu, H. Hao, Y. Zhen, T. Wang, D. Zhou, H. Liu, M. Cao, Z. Yao, Temperature stability of dielectric properties for xBiAlO3 − (1 − x)BaTiO3 ceramics. J. Eur. Ceram. Soc. 35(8), 2303–2311 (2015)

    Article  Google Scholar 

  15. X. Huang, H. Liu, H. Hao, Z. Wang, W. Hu, Q. Xu, L. Zhang, M. Cao, Structure, dielectric and impedance properties of BaTiO3–Bi(Y0.5Yb0.5)O3 lead-free ceramics. J. Mater. Sci: Mater. Electron. 26(5), 3215–3222 (2015)

    Google Scholar 

  16. Z. Shen, X. Wang, B. Luo, L. Li, BaTiO3-BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3(35), 18146–18153 (2015)

    Article  Google Scholar 

  17. G. Schileo, A. Feteira, K. Reichmann, M. Li, D.C. Sinclair, Structure–property relationships in (1 − x)BaTiO3 − xBiGdO3 ceramics. J. Eur. Ceram. Soc. 35(9), 2479–2488 (2015)

    Article  Google Scholar 

  18. A. Bell, A. Moulson, The effect of grain size on the permittivity of BaTiO3. Ferroelectrics 54(1), 147–151 (1984)

    Article  Google Scholar 

  19. I. Fujii, S. Trolier-Mckinstry, C. Nies, Effect of grain size on dielectric nonlinearity in Model BaTiO3-based multilayer ceramic capacitors. J. Am. Ceram. Soc. 94(1), 194–199 (2011)

    Article  Google Scholar 

  20. K. Wu, W. Schltze, Aging of the weak-field dielectric response in fine- and coarse-grain ceramic BaTiO3. J. Am. Ceram. Soc. 75(12), 3390–3395 (1992)

    Article  Google Scholar 

  21. K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72(8), 1555–1558 (1989)

    Article  Google Scholar 

  22. G. Arlt, D. Hennings, G. de With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58(4), 1619 (1985)

    Article  Google Scholar 

  23. Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Roybal, M. Joler, C. Christodoulou, Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. Proceedings of the 14th IEEE International Pulsed Power Conference, Dallas, TX, 15–18 June 2003

  24. I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774), 168–171 (2000)

    Article  Google Scholar 

  25. Y.I. Lee, Y.W. Kim, M. Mitomo, D.Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. J. Am. Ceram. Soc. 86(10), 1803–1805 (2003)

    Article  Google Scholar 

  26. X.H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, I.W. Chen, Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-Cu-Zn ferrite. J. Am. Ceram. Soc. 89(2), 438–443 (2006)

    Article  Google Scholar 

  27. K. Bodišová, P. Šajgalík, D. Galusek, P. Švančárek, Two-stage sintering of alumina with submicrometer grain size. J. Am. Ceram. Soc. 90(1), 330–332 (2007)

    Article  Google Scholar 

  28. A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A novel approach to sintering nanocrystalline barium titanate ceramics. J. Am. Ceram. Soc. 88(11), 3008–3012 (2005)

    Article  Google Scholar 

  29. K. Kinoshita, Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47(1), 371 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (No. ICEM2015-4002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wei, M., Wu, K. et al. Two-step sintering for improving the energy storage properties of 0.8BaTiO3–0.2BiYO3 ceramics. J Mater Sci: Mater Electron 29, 2471–2476 (2018). https://doi.org/10.1007/s10854-017-8168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8168-8

Navigation