Skip to main content
Log in

Structural and Opto-electronic characterization of CuO thin films prepared by DC reactive magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

P-type CuO thin films have been deposited and optimized for large-area photodetection applications by tuning the sputtering pressure and oxygen to argon gas ratio, considering both high-temperature sputtering and post-annealing. The obtained layers show tunable bandgaps from 1.30 to 2.04 eV and Urbach energies lower than 8 meV. Reliable Hall measurements reveal the inverse double logarithmic relationship between Hall mobility and carrier concentration. By setting the optimal sputtering pressure of 10 mTorr (O2/Ar = 8/22 sccm) at the edge of oxidization and transition regimes, CuO with 1.64 eV bandgap reaches stable hole mobility of 34.2 cm2V−1 s−1 and hole concentration of 3.92 × 1014 cm−3 after 250 °C post-annealing. Considering heating at 150 °C during the deposition, CuO with 1.63 eV bandgap also reaches stable record hole mobility of 113.7 cm2V−1 s−1 and hole concentration of 1.39 × 1014 cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.H. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat. Nanotechnol. 9, 780 (2014)

    CAS  Google Scholar 

  2. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013)

    CAS  Google Scholar 

  3. Z.P. Ling, R. Yang, J.W. Chai, S.J. Wang, W.S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D.Z. Chi, K.W. Ang, Opt. Express 23, 13580 (2015)

    CAS  Google Scholar 

  4. J. Xia, X. Huang, L.Z. Liu, M. Wang, L. Wang, B. Huang, D.D. Zhu, J.J. Li, C.Z. Gu, X.M. Meng, Nanoscale 6, 8949 (2014)

    CAS  Google Scholar 

  5. J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, X.-M. Meng, Adv. Funct. Mater. 25, 4255 (2015)

    CAS  Google Scholar 

  6. K. Sun, Y. Jing, N. Park, C. Li, Y. Bando, D. Wang, J. Am. Chem. Soc. 132, 15465 (2010)

    CAS  Google Scholar 

  7. M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent, O.M. Bakr, Nat. Commun. 6, 8724 (2015)

    CAS  Google Scholar 

  8. Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, R. Zhang, Nat. Commun. 6, 8589 (2015)

    CAS  Google Scholar 

  9. H.J. Song, M.H. Seo, K.W. Choi, M.S. Jo, J.Y. Yoo, J.B. Yoon, Sci. Rep. 9, 7334 (2019)

    Google Scholar 

  10. S. Masudy-Panah, R. Siavash Moakhar, C.S. Chua, H.R. Tan, T.I. Wong, D. Chi, G.K. Dalapati, ACS Appl. Mater. Interfaces 8, 1206 (2016)

    CAS  Google Scholar 

  11. D. Wu, Q. Zhang, M. Tao, Phys. Rev. B 73, 235206 (2006)

    Google Scholar 

  12. F. Gao, X.J. Liu, J.S. Zhang, M.Z. Song, N. Li, J. Appl. Phys 111, 084507 (2012)

    Google Scholar 

  13. J. Liang, N. Kishi, T. Soga, T. Jimbo, M. Ahmed, Thin Solid Films 520, 2679 (2012)

    CAS  Google Scholar 

  14. X. Zhang, D. Zhang, X. Ni, H. Zheng, Solid State Electron. 52, 245 (2008)

    CAS  Google Scholar 

  15. T.S. Tripathi, I. Terasaki, M. Karppinen, J. Phys. Condens. Matter 28, 475801 (2016)

    CAS  Google Scholar 

  16. Y. Akaltun, Thin Solid Films 594, 30 (2015)

    CAS  Google Scholar 

  17. J. Sultana, S. Paul, A. Karmakar, G.K. Dalapati, S. Chattopadhyay, J. Mater. Sci. 29, 12878 (2018)

    CAS  Google Scholar 

  18. S. Lee, W.Y. Lee, B. Jang, T. Kim, J.H. Bae, K. Cho, S. Kim, J. Jang, IEEE Electron. Dev. Lett. 39, 47 (2018)

    CAS  Google Scholar 

  19. T. DIxit, A. Tripathi, K.L. Ganapathi, I.A. Palani, M.S. Ramachandra Rao, V. Singh, IEEE Electron. Dev. Lett. 40, 255 (2019)

    CAS  Google Scholar 

  20. J. Sultana, A. Das, A. Das, N.R. Saha, A. Karmakar, S. Chattopadhyay, Thin Solid Films 612, 331 (2016)

    CAS  Google Scholar 

  21. Z. Hubička, M. Zlámal, M. Čada, M. Kment, J. Krýsa, Catal. Today 328, 29 (2019)

    Google Scholar 

  22. A. Nalbant, Ö. Ertek, I. Okur, Mater. Sci. Eng. 178, 368 (2013)

    CAS  Google Scholar 

  23. Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S. Ur Rahman, R. De Bold, D. Gibson, Vacuum 144, 217 (2017)

    CAS  Google Scholar 

  24. H.S. Kim, M. Patel, P. Yadav, J. Kim, A. Sohn, D.W. Kim, Appl. Phys. Lett. 109, 101902 (2016)

    Google Scholar 

  25. L. Radjehi, A. Djelloul, M. Bououdina, R. Siab, W. Tebib, Appl. Phys. A 124, 723 (2018)

    Google Scholar 

  26. H.C. Lu, C.L. Chu, C.Y. Lai, Y.H. Wang, Thin Solid Films 517, 4408 (2009)

    CAS  Google Scholar 

  27. D. Tahir, S. Tougaard, J. Phys. Condens. Matter 24, 175002 (2012)

    Google Scholar 

  28. Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mücklich, J.F. Pierson, Phys. Rev. B 94, 245418 (2016)

    Google Scholar 

  29. W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, Z. Huang, Materials (Basel). 11, 1253 (2018)

    Google Scholar 

  30. N.W. Sangwaranatee, N. Sangwaranatee, M. Horprathum, C. Chananonnawathorn, E. Sustini, Mater. Today Proc. 5, 15198 (2018)

    CAS  Google Scholar 

  31. S. Sai Guru Srinivasan, B. Govardhanan, P. Aabel, M. Ashok, M.C. Santhosh Kumar, Sol. Energy 187, 368 (2019)

    Google Scholar 

  32. N. Sangwaranatee, C. Chananonnawathorn, M. Horprathum, Mater. Today Proc. 5, 13896 (2018)

    CAS  Google Scholar 

  33. Ş. Korkmaz, B. Geçici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Özen, V. Şenay, H.H. Yudar, Vacuum 131, 142 (2016)

    CAS  Google Scholar 

  34. S. Michotte, J. Proost, Sol. Energy Mater. Sol. Cells 98, 253 (2012)

    CAS  Google Scholar 

  35. J. Proost, F. Henry, R. Tuyaerts, S. Michotte, J. Appl. Phys. 120, 075308 (2016)

    Google Scholar 

  36. J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Raman Spectrosc. 30, 413 (1999)

    CAS  Google Scholar 

  37. V.S. Levitskii, V.I. Shapovalov, A.E. Komlev, A.V. Zav’yalov, V.V. Vit’ko, A.A Komlev, E.S. Shutova, Tech. Phys. Lett. 41, 1094 (2015)

    CAS  Google Scholar 

  38. A.S. Reddy, H.H. Park, V.S. Reddy, K.V.S. Reddy, N.S. Sarma, S. Kaleemulla, S. Uthanna, P.S. Reddy, Mater. Chem. Phys. 110, 397 (2008)

    CAS  Google Scholar 

  39. I. Studenyak, M. Kranj, M. Kurik, Int. J. Opt. Appl. 4, 76 (2014)

    Google Scholar 

  40. B. Giroire, M. Ali Ahmad, G. Aubert, L. Teule-Gay, D. Michau, J.J. Watkins, C. Aymonier, A. Poulon-Quintin, Thin Solid Films 643, 53 (2017)

    CAS  Google Scholar 

  41. S. Masudy-Panah, R. Siavash Moakhar, C.S. Chua, A. Kushwaha, T.I. Wong, G.K. Dalapati, RSC Adv. 6, 29383 (2016)

    CAS  Google Scholar 

  42. M. Zhukova, R. Kotipalli, O. Poncelet, L. Samain, L. Fourdrinier, D. Flandre, Optimization of optoelectrical properties of DC magnetron sputtered Cu2ZnSnS4 absorber layer (in E-MRS (European Materials Research Society) 2019-Spring Meeting). https://hdl.handle.net/2078.1/218948. Accessed 17 Dec 2019

  43. J. Kaur, R. Singh, Surf. Rev. Lett. 25, 1950029 (2018)

    CAS  Google Scholar 

  44. R.D. Prabu, S. Valanarasu, I. Kulandaisamy, V. Ganesh, M. Shkir, A. Kathalingam, J. Mater. Sci. 28, 6754 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by China Scholarship Council and Université Catholique de Louvain Co-Funding Fellowship (No. CSC201806130158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhukova, M., Faniel, S. et al. Structural and Opto-electronic characterization of CuO thin films prepared by DC reactive magnetron sputtering. J Mater Sci: Mater Electron 31, 4563–4573 (2020). https://doi.org/10.1007/s10854-020-03007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03007-4

Navigation