Skip to main content
Log in

Structural, Optical, and Electrical Characteristics of Cu3N with Respect to Substrate Temperature and N2 Concentration in Mixed Sputtering Gas

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cu3N films are investigated utilizing direct current magnetron sputtering from the Cu target in an Ar/N2 mixed sputtering gas. X-ray diffractive analysis, Ultra-violet absorption spectroscopy, X-ray dispersive spectroscopy, atomic force microscopy, field-emission scanning electron microscopy, Hall measurements, and I–V characteristic measurements are used to investigate the properties of the films. The study findings initially obtained films with a Cu3N composition at the appropriate substrate temperature of 80 °C. When the N2:(Ar + N2) gas ratio is more than 50%, the electrical property of films switches from n-type to p-type. The film obtains the greatest crystal quality and the best p-type electric property at the N2:(Ar + N2) gas ratio of 70%, with resistivity, hole concentration, and hole mobility of 1.18 × 10–2 Ωcm, 9.8 × 1019 cm−3, and 5.4 cm2V−1 s−1, respectively. A p–n Cu3N homojunction cell has an efficiency of 0.21%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Steiner, M.A.; France, R.M.; Buencuerpo, J.; Geisz, J.F.; Nielsen, M.P.; Pusch, A.; Olavarria, W.J.; Young, M.; Ekins-Daukes, N.J.: High efficiency inverted GaAs and GaInP/GaAs solar cells with strain-balanced GaInAs/GaAsP quantum wells. Adv. Energy Mater. 11, 2002874 (2021). https://doi.org/10.1002/aenm.202002874

    Article  Google Scholar 

  2. Pham, D.P.; Lee, S.; Yi, J.: Potential high efficiency of GaAs solar cell with heterojunction carrier selective contact layers. Physica B 611, 412856 (2021). https://doi.org/10.1016/j.physb.2021.412856

    Article  Google Scholar 

  3. Chaudhry, F.A.; Escandell, L.; López-Fraguas, E.; Vergaz, R.; Sánchez-Pena, J.M.; García-Cámara, B.: Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles. Sci. Rep. 12, 9240 (2022). https://doi.org/10.1038/s41598-022-13418-4

    Article  Google Scholar 

  4. Pham, D.P.; Lee, S.; Quddamah Khokhar, M.; Chowdhury, S.; Park, H.; Kim, Y.; Cho, E.-C.; Yi, J.: Innovative passivating contact using quantum well at poly-Si/c-Si interface for crystalline silicon solar cells. Chem. Eng. J. 423, 130239 (2021). https://doi.org/10.1016/j.cej.2021.130239

    Article  Google Scholar 

  5. Pham, D.P.; Oh, D.; Dao, V.-A.; Kim, Y.; Yi, J.: Enhanced energy conversion performance of silicon solar cells by quantum-confinement effect of polysilicon oxide. Appl. Mater. Today 29, 101604 (2022). https://doi.org/10.1016/j.apmt.2022.101604

    Article  Google Scholar 

  6. Narangari, P.R.; Karuturi, S.K.; Wu, Y.; Wong-Leung, J.; Vora, K.; Lysevych, M.; Wan, Y.; Tan, H.H.; Jagadish, C.; Mokkapati, S.: Ultrathin Ta2O5 electron-selective contacts for high efficiency InP solar cells. Nanoscale 11, 7497–7505 (2019). https://doi.org/10.1039/C8NR09932D

    Article  Google Scholar 

  7. Li, D.-B.; Bista, S.S.; Song, Z.; Awni, R.A.; Subedi, K.K.; Shrestha, N.; Pradhan, P.; Chen, L.; Bastola, E.; Grice, C.R.; Phillips, A.B.; Heben, M.J.; Ellingson, R.J.; Yan, Y.: Maximize CdTe solar cell performance through copper activation engineering. Nano Energy 73, 104835 (2020). https://doi.org/10.1016/j.nanoen.2020.104835

    Article  Google Scholar 

  8. Çetinkaya, Ç.; Çokduygulular, E.; Kınacı, B.; Güzelçimen, F.; Özen, Y.; Sönmez, N.A.; Özçelik, S.: Highly improved light harvesting and photovoltaic performance in CdTe solar cell with functional designed 1D-photonic crystal via light management engineering. Sci. Rep. 12, 11245 (2022). https://doi.org/10.1038/s41598-022-15078-w

    Article  Google Scholar 

  9. Ma, C.; Lu, X.; Xu, B.; Zhao, F.; An, X.; Li, B.; Yue, F.; Jiang, J.; Chen, Y.; Sun, L.; Chu, J.: Effect of CZTS/CdS interfaces deposited with sputtering and CBD methods on Voc deficit and efficiency of CZTS solar cells. J. Alloys Compd. 817, 153329 (2020). https://doi.org/10.1016/j.jallcom.2019.153329

    Article  Google Scholar 

  10. Rana, Md.S.; Islam, Md.M.; Julkarnain, M.: Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Sol. Energy 226, 272–287 (2021). https://doi.org/10.1016/j.solener.2021.08.035

    Article  Google Scholar 

  11. Barman, B.; Kalita, P.K.: Influence of back surface field layer on enhancing the efficiency of CIGS solar cell. Sol. Energy 216, 329–337 (2021). https://doi.org/10.1016/j.solener.2021.01.032

    Article  Google Scholar 

  12. Kara, R.; Lahmar, H.; Mentar, L.; Siab, R.; Kadirgan, F.; Azizi, A.: Electrochemical growth and characterization of Cu2O:Na/ZnO heterojunctions for solar cells applications. J. Alloys Compd. 817, 152748 (2020). https://doi.org/10.1016/j.jallcom.2019.152748

    Article  Google Scholar 

  13. Miyata, T.; Tokunaga, H.; Watanabe, K.; Ikenaga, N.; Minami, T.: Photovoltaic properties of low-damage magnetron-sputtered n-type ZnO thin film/p-type Cu2O sheet heterojunction solar cells. Thin Solid Films 697, 137825 (2020). https://doi.org/10.1016/j.tsf.2020.137825

    Article  Google Scholar 

  14. Qin, C.; Wang, Y.; Lou, Z.; Yue, S.; Niu, W.; Zhu, L.: Surface modification and stoichiometry control of Cu2O/SnO2 heterojunction solar cell by an ultrathin MgO tunneling layer. J. Alloys Compd. 779, 387–393 (2019). https://doi.org/10.1016/j.jallcom.2018.11.155

    Article  Google Scholar 

  15. Navío, C.; Capitán, M.J.; Álvarez, J.; Yndurain, F.; Miranda, R.: Intrinsic surface band bending in Cu 3 N (100) ultrathin films. Phys. Rev. B 76, 085105 (2007). https://doi.org/10.1103/PhysRevB.76.085105

    Article  Google Scholar 

  16. Noh, H.; An, H.; Lee, J.; Song, J.; Hong, H.J.; Seo, S.; Jeong, S.Y.; Kim, B.-J.; Ryu, S.; Lee, S.: Large enhancement of the photocurrent density in N-doped Cu3N films through bandgap reduction. J. Korean Ceram. Soc. 57, 345–351 (2020). https://doi.org/10.1007/s43207-020-00033-0

    Article  Google Scholar 

  17. Zamani Meymian, M.R.; Delavari Heravi, A.; Kosari Mehr, A.: Influence of bias voltage on optical and structural characteristics of Cu3N films deposited by reactive RF magnetron sputtering in a pure nitrogen atmosphere. Mater. Sci. Semicond. Process. 112, 104995 (2020). https://doi.org/10.1016/j.mssp.2020.104995

    Article  Google Scholar 

  18. Wang, J.; Chen, J.T.; Yuan, X.M.; Wu, Z.G.; Miao, B.B.; Yan, P.X.: Copper nitride (Cu3N) thin films deposited by RF magnetron sputtering. J. Cryst. Growth 286, 407–412 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.107

    Article  Google Scholar 

  19. Xiao, J.; Qi, M.; Cheng, Y.; Jiang, A.; Zeng, Y.; Ma, J.: Influences of nitrogen partial pressure on the optical properties of copper nitride films. RSC Adv. 6, 40895–40899 (2016). https://doi.org/10.1039/C6RA03479A

    Article  Google Scholar 

  20. Fioretti, A.N.; Schwartz, C.P.; Vinson, J.; Nordlund, D.; Prendergast, D.; Tamboli, A.C.; Caskey, C.M.; Tuomisto, F.; Linez, F.; Christensen, S.T.; Toberer, E.S.; Lany, S.; Zakutayev, A.: Understanding and control of bipolar self-doping in copper nitride. J. Appl. Phys. 119, 181508 (2016). https://doi.org/10.1063/1.4948244

    Article  Google Scholar 

  21. Yee, Y.S.; Inoue, H.; Hultqvist, A.; Hanifi, D.; Salleo, A.; Magyari-Köpe, B.; Nishi, Y.; Bent, S.F.; Clemens, B.M.: Copper interstitial recombination centers in Cu3N. Phys. Rev. B 97, 245201 (2018). https://doi.org/10.1103/PhysRevB.97.245201

    Article  Google Scholar 

  22. Chen, S.-C.; Huang, S.-Y.; Sakalley, S.; Paliwal, A.; Chen, Y.-H.; Liao, M.-H.; Sun, H.; Biring, S.: Optoelectronic properties of Cu3N thin films deposited by reactive magnetron sputtering and its diode rectification characteristics. J. Alloys Compd. 789, 428–434 (2019). https://doi.org/10.1016/j.jallcom.2019.02.268

    Article  Google Scholar 

  23. Zervos, M.; Othonos, A.; Pavloudis, T.; Giaremis, S.; Kioseoglou, J.; Mavridou, K.; Katsikini, M.; Pinakidou, F.; Paloura, E.C.: Impact of oxygen on the properties of Cu3N and Cu3–xN1–xOx. J. Phys. Chem. C 125, 3680–3688 (2021). https://doi.org/10.1021/acs.jpcc.0c08885

    Article  Google Scholar 

  24. Okrasa, S.; Wilczopolska, M.; Strzelecki, G.; Nowakowska-Langier, K.; Chodun, R.; Minikayev, R.; Król, K.; Skowronski, L.; Namyślak, K.; Wicher, B.; Wiraszka, A.; Zdunek, K.: The influence of thermal stability on the properties of Cu3N layers synthesized by pulsed magnetron sputtering method. Thin Solid Films 735, 138889 (2021). https://doi.org/10.1016/j.tsf.2021.138889

    Article  Google Scholar 

  25. Matsuzaki, K.; Okazaki, T.; Lee, Y.-S.; Hosono, H.; Susaki, T.: Controlled bipolar doping in Cu3N (100) thin films. Appl. Phys. Lett. 105, 222102 (2014). https://doi.org/10.1063/1.4903069

    Article  Google Scholar 

  26. Sahoo, G.; Meher, S.R.; Jain, M.K.: Room temperature growth of high crystalline quality Cu3N thin films by modified activated reactive evaporation. Mater. Sci. Eng. B 191, 7–14 (2015). https://doi.org/10.1016/j.mseb.2014.10.002

    Article  Google Scholar 

  27. Yue, G.H.; Yan, P.X.; Liu, J.Z.; Wang, M.X.; Li, M.; Yuan, X.M.: Copper nitride thin film prepared by reactive radio-frequency magnetron sputtering. J. Appl. Phys. 98, 103506 (2005). https://doi.org/10.1063/1.2132507

    Article  Google Scholar 

  28. Joo Kim, K.; Hyuk Kim, J.; Hoon Kang, J.: Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering. J. Cryst. Growth 222, 767–772 (2001). https://doi.org/10.1016/S0022-0248(00)00968-4

    Article  Google Scholar 

  29. Jiang, A.; Qi, M.; Xiao, J.: Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: a review. J. Mater. Sci. Technol. 34, 1467–1473 (2018). https://doi.org/10.1016/j.jmst.2018.02.02

    Article  Google Scholar 

  30. Zakutayev, A.; Caskey, C.M.; Fioretti, A.N.; Ginley, D.S.; Vidal, J.; Stevanovic, V.; Tea, E.; Lany, S.: Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014). https://doi.org/10.1021/jz5001787

    Article  Google Scholar 

  31. Mukhopadhyay, A.K.; Momin, Md.A.; Roy, A.; Das, S.C.; Majumdar, A.: Optical and electronic structural properties of Cu3N thin films: a first-principles study (LDA + U). ACS Omega 5, 31918–31924 (2020). https://doi.org/10.1021/acsomega.0c04821

    Article  Google Scholar 

  32. Ramarajan, R.; Purushothamreddy, N.; Dileep, R.K.; Kovendhan, M.; Veerappan, G.; Thangaraju, K.; Paul Joseph, D.: Large-area spray deposited Ta-doped SnO2 thin film electrode for DSSC application. Sol. Energy 211, 547–559 (2020). https://doi.org/10.1016/j.solener.2020.09.042

    Article  Google Scholar 

  33. Dasi, G.; Lavanya, T.; Sathiyan, G.; Gupta, R.K.; Garg, A.; Amaladass, P.; Thangaraju, K.: Improved hole injection/extraction using PEDOT:PSS interlayer coated onto high temperature annealed ITO electrode for efficient device performances. Superlattices Microstruct. 156, 106953 (2021). https://doi.org/10.1016/j.spmi.2021.106953

    Article  Google Scholar 

  34. Zhu, L.; Cao, X.; Xiao, J.; Ma, S.; Ta, S.: Structure and photocatalytic properties of TiO2/Cu3N composite films prepared by magnetron sputtering. Mater. Today Commun. 26, 101739 (2021). https://doi.org/10.1016/j.mtcomm.2020.101739

    Article  Google Scholar 

  35. Zhu, L.; Cao, X.; Gong, C.; Jiang, A.; Cheng, Y.; Xiao, J.: Preparation of Cu3N/MoS2 heterojunction through magnetron sputtering and investigation of its structure and optical performance. Materials 13, 1873 (2020). https://doi.org/10.3390/ma13081873

    Article  Google Scholar 

  36. Xiao, J.; Qi, M.; Gong, C.; Wang, Z.; Jiang, A.; Ma, J.; Cheng, Y.: Crystal structure and optical properties of silver-doped copper nitride films (Cu3N:Ag) prepared by magnetron sputtering. J. Phys. D Appl. Phys. 51, 055305 (2018). https://doi.org/10.1088/1361-6463/aaa478

    Article  Google Scholar 

  37. Jiang, A.; Xiao, J.; Gong, C.; Wang, Z.; Ma, S.: Structure and electrical transport properties of Pb-doped copper nitride (Cu3N:Pb) films. Vacuum 164, 53–57 (2019). https://doi.org/10.1016/j.vacuum.2019.03.008

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by University of Science, VNU-HCM under grant number T2023-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Le.

Ethics declarations

Conflict of interest

The author declares that I have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T. Structural, Optical, and Electrical Characteristics of Cu3N with Respect to Substrate Temperature and N2 Concentration in Mixed Sputtering Gas. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08589-9

Keywords

Navigation