Skip to main content
Log in

Role of dye-induced corrosion in determining the efficiency of ZnO-based DSSC: the case of ZnO nanoforest in N719

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO-based DSSCs usually show less efficiency than TiO2-based cells despite ZnO being better transporter of electrons. More surprisingly, ZnO nanoforest, which provides seamless electron pathways and large surface area, shows a very modest efficiency of 2.6%. Usually dye complexation and dye aggregation are thought of as two reasons for such underperformance. In this work, we show (using electron microscopy) that significant corrosion of the photoanode occurs in dye solution and dye-induced corrosion is a major reason for low efficiency. It has been shown that the surface of the nanosized features of the photoanode got roughened within hours of dye loading. Such corrosion is much more severe for ZnO nanoforest because they contain more intricate structures in comparison with nanowires. In terms of dynamics, two surface processes occur simultaneously when the electrode is dipped into the ethanolic dye solution: adsorption and corrosion. Hence, a sweet spot is possible where the good amount of dye is adsorbed with little corrosion. It has been shown that the short-circuit current can be increased significantly by optimization of dye loading conditions. Such optimum conditions are found to be dependent on the intricacy of the mesoporous structure. A maximum photocurrent of 13 mA/cm2 and maximum efficiency of 2.9% has been achieved which is highest reported for the configuration used. Although it may appear that application of a passivation layer might appease the corrosion issue, our experiments show that such coatings reduce the photocurrent significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Google Scholar 

  2. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Thin Solid Films 516, 4613 (2008)

    CAS  Google Scholar 

  3. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, J. Photochem. Photobiol. A. 148, 57 (2002)

    CAS  Google Scholar 

  4. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666 (2011)

    CAS  Google Scholar 

  5. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    CAS  Google Scholar 

  6. P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5, 5158 (2011)

    CAS  Google Scholar 

  7. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)

    Google Scholar 

  8. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    CAS  Google Scholar 

  9. F. Sauvage, F. Di Fonzo, A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, Nano Lett. 10, 2562 (2010).

    CAS  Google Scholar 

  10. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007)

    CAS  Google Scholar 

  11. M. McCune, W. Zhang, Y. Deng, Nano Lett. 12, 3656 (2012)

    CAS  Google Scholar 

  12. C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan, E. Xie, Nanoscale 4, 3475 (2012)

    CAS  Google Scholar 

  13. E. Ramasamy, J. Lee, J. Phys. Chem. C 114, 22032 (2010)

    CAS  Google Scholar 

  14. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    CAS  Google Scholar 

  15. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006)

    CAS  Google Scholar 

  16. N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Angew. Chem. Int. Ed. 50, 12321 (2011)

    CAS  Google Scholar 

  17. Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Angew. Chem. Int. Ed. 47, 2402 (2008)

    CAS  Google Scholar 

  18. T. Marimuthu, N. Anandhan, R. Thangamuthu, J. Mater. Sci. 53, 12441 (2018)

    CAS  Google Scholar 

  19. S.R. Raga, E.M. Barea, F. Fabregat-Santiago, J. Phys. Chem. Lett. 3, 1629 (2012)

    CAS  Google Scholar 

  20. M.-H. Jao, H.-C. Liao, W.-F. Su, J. Mater. Chem. A 4, 5784 (2016)

    CAS  Google Scholar 

  21. E. Guillén, L.M. Peter, J.A. Anta, J. Phys. Chem. C 115, 22622 (2011)

    Google Scholar 

  22. Y. Li, Y. Wang, C. Chen, A. Pang, M. Wei, Chem. A 18, 11716 (2012)

    CAS  Google Scholar 

  23. K. Keis, J. Lindgren, S.-E. Lindquist, A. Hagfeldt, Langmuir 16, 4688 (2000)

    CAS  Google Scholar 

  24. G. Zhang, Q. Liao, Z. Qin, Z. Zhang, X. Zhang, P. Li, Q. Wang, S. Liu, Y. Zhang, RSC Adv. 4, 39332 (2014)

    CAS  Google Scholar 

  25. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 107, 2570 (2003)

    CAS  Google Scholar 

  26. L. Ke, S. BinDolmanan, L. Shen, P.K. Pallathadk, Z. Zhang, D.M. YingLai, H. Liu, Sol. Energy Mater. Sol. Cells 94, 323 (2010)

    CAS  Google Scholar 

  27. K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002)

    Google Scholar 

  28. C.-M. Lin, Y.-C. Chang, J. Yao, C. Wang, C. Luo, S. Yin, Mater. Chem. Phys. 135, 723 (2012)

    CAS  Google Scholar 

  29. L. Liu, Y. Chen, T. Guo, Y. Zhu, Y. Su, C. Jia, M. Wei, Y. Cheng, A.C.S. Appl, Mater. Interfaces 4, 17 (2012)

    CAS  Google Scholar 

  30. S. Ghosh, J. Chakraborty, Mater. Res. Express 3, 1250041 (2016)

    Google Scholar 

  31. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002)

    CAS  Google Scholar 

  32. F. Yan, L. Huang, J. Zheng, J. Huang, Z. Lin, F. Huang, M. Wei, Langmuir 26, 7153 (2010)

    CAS  Google Scholar 

  33. R. Scholin, M. Quintana, E.M.J. Johansson, M. Hahlin, T. Marinado, A. Hagfeldt, H. Rensmo, J. Phys. Chem. C 115, 19274 (2011)

    CAS  Google Scholar 

  34. D. Siopa, R. Nunes, F. Mirtins, M.S.C. Santos, K. Lobato, A. Gomes, J. Solid State. Electrochem 22, 2779 (2018)

    CAS  Google Scholar 

  35. A.S. Polo, M.K. Itokazu, N.Y. Murakami Iha, Coord. Chem. Rev. 248, 1343 (2004).

    CAS  Google Scholar 

  36. P. Charoensirithavorn, S. Yoshikawa, MRS Proc. 974, 0974 (2006)

    Google Scholar 

  37. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 110, 22652 (2006)

    CAS  Google Scholar 

  38. C. Xu, P. Shin, L. Cao, D. Gao, J. Phys. Chem. C 114, 125 (2010)

    CAS  Google Scholar 

  39. C.-H. Ku, J.-J. Wu, Appl. Phys. Lett. 91, 093117 (2007)

    Google Scholar 

  40. Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Cryst. Growth Des. 7, 2467 (2007)

    CAS  Google Scholar 

  41. T. Ma, M. Guo, M. Zhang, Y. Zhang, X. Wang, Nanotechnology 18, 035605 (2007)

    Google Scholar 

  42. J.J. Cheng, S.M. Nicaise, K.K. Berggren, S. Gradečak, Nano Lett. 16, 753 (2016)

    CAS  Google Scholar 

  43. H. Zhang, X. Wu, F. Qu, G. Zhao, CrystEngComm 13, 6114 (2011)

    CAS  Google Scholar 

  44. J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.-R. Jung, B. Park, J. Power Sources 196, 10526 (2011)

    CAS  Google Scholar 

  45. J.C. Conesa, J. Phys. Chem. C 116, 18884 (2012)

    CAS  Google Scholar 

  46. W.H. Nam, Y.S. Lim, W.-S. Seo, H.K. Cho, J.Y. Lee, J. Nanoparticle Res. 13, 5825 (2011)

    CAS  Google Scholar 

  47. A. Brayek, S. Chaguetmi, M. Ghoul, I. Ben Assaker, R. Chtourou, P. Decorse, P. Beaunier, S. Nowak, F. Mammeri, and S. Ammar, RSC Adv. 8, 11785 (2018).

    CAS  Google Scholar 

  48. S.S. Lo, Y.T. Hung, D.J. Jan, J. Mater. Chem. A 1, 10274 (2013)

    CAS  Google Scholar 

  49. X.-L. Yu, J.-G. Song, Y.-S. Fu, Y. Xie, X. Song, J. Sun, X.-W. Du, J. Phys. Chem. C 114, 2380 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Sartape, R. & Chakraborty, J. Role of dye-induced corrosion in determining the efficiency of ZnO-based DSSC: the case of ZnO nanoforest in N719. J Mater Sci: Mater Electron 31, 2202–2220 (2020). https://doi.org/10.1007/s10854-019-02752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02752-5

Navigation